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Abstract

Generative models are powerful machine learning models that have the ability to
probabilistically generate unique, realistic samples of data. These models can generate
anything from hyper-realistic images of faces to 3D models of chairs. Recent publicly-
available generative models such as ChatGPT and DALL-E have gained widespread
attention and usage. However, generative models often have high-dimensional latent
space representations of the data, which results in the latent space vectors used to
generate outputs being difficult to interpret.

In this paper, we introduce an application for exploring generative models in
hyperbolic space. We adopt the hyperboloid model of hyperbolic geometry and im-
plement a regular tiling system for this model. We implement the hyperbolic world
in the Unity game engine and link the hyperbolic world with a Flask server that
produces output images from LAFITE, a state-of-the-art generative model. Finally,
we run simulated experiments to evaluate the effectiveness of our system as a tool for
human-in-the-loop optimization of generative models of varying dimensions.

This project is published online! using Unity WebGL.

Code for the Unity implementation is available at:
https://github.com/rl127/MercatorUnity

Code for the model server and the midpoint server is available at:

https://github.com/rl27/MercatorUnityServer.

lhttps://play.unity.com/mg/other/build-rj5-1
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Chapter 1

Introduction

Generative models are machine learning models that have the powerful ability to learn
the features of a given set of data, then use these features to probabilistically generate
unique, realistic samples. These models can generate a wide variety of high-quality
content such as hyper-realistic images of faces, 3D models of chairs, and melodies.
Recent publicly-available generative models such as ChatGPT and DALL-E have
gained widespread attention and usage. However, generative models can have high-
dimensional latent space representations of the data, which results in the latent space
vectors used to generate outputs being difficult to interpret.

In this thesis, we introduce a system that allows users to visualize and exploring
correlated outputs from generative models in hyperbolic space. Unlike Euclidean
space, hyperbolic space expands exponentially due to having negative curvature,
which makes it far less limiting than Euclidean space to explore, and can poten-
tially allow a user to explore an enormous distance in a short period of time. Our
system makes use of this by displaying generated images in a simulated hyperbolic
world, with outputs being correlated to each other based on distance within the
world. Users can easily and intuitively visualise correlated outputs and attempt to

find desired outputs through exploration of this world.



Chapter 2

Background and Related Work

Hyperbolic space is a generally under-explored topic, but there have been a few
prominent simulations of hyperbolic space. HyperRogue, originally released in 2011,
is a 2D roguelike video game played from the top-down perspective that allows players
to explore an infinitely-generated hyperbolic world [8]. Hyperbolica, released in 2022,
is a 3D puzzle video game that similarly takes place in a hyperbolic world [5]. While
these projects focus on the novelty of hyperbolic geometry, we additionally focus on
applications of generative models.

Interactive optimization of latent spaces is something that has been tackled in
many different ways and with many different kinds of content. The work of Zhou et
al. involved displaying four probabilistically generated melodies at a time, with users
selecting a melody to then use to generate four more, with there being a slider to
control exploration vs. exploitation [19, 18]. Chiu et al. used generated images of
faces with a slider to search over 1D subspaces of the latent space [3], while Chong
et al. allowed users to edit images of faces before generating more [4]. Brochu et al.
used generated animations and allowed users to tune a variety of parameters [2]. In
this work, we introduce a new system that uses regular tilings in hyperbolic space

with image outputs, although theoretically our work could be extended to generate



and display any kind of output.

Many other latent space visualizations are static and represented on 2D scatter
plots, either directly using two intrinsic latent dimensions or using axes from di-
mensionality reduction methods such as t-SNE or PCA [9]. They do not allow for
exploration of the latent space, and the representation can easily be incorrect or mis-
interpreted due to its lack of dimensionality and the latent spaces’ lack of physical
units, leaving the original latent space vague [1]. Our system aims to address this

problem through the use of an explorable hyperbolic world.



Chapter 3

Approach

3.1 Hyperbolic Geometry

3.1.1 The Hyperboloid Model

There are many different models of hyperbolic geometry, including the Poincaré disk,
the Poincaré half-plane, Klein-Beltrami, the hemisphere, and the hyperboloid. Each
model has its own advantages and disadvantages. For instance, the Poincaré disk
preserves angles, but lines are arcs and can appear curved. On the other hand,
Klein-Beltrami preserves straight lines, but not angles.

We chose to use the hyperboloid model of hyperbolic geometry internally, as it
is an intuitive, easy-to-understand model with multiple analogs to Euclidean and
spherical geometry. Subsequent sections and described implementations will also use

the hyperboloid model.

Coordinate System Convention

The Unity game engine uses a Y-up coordinate system, meaning the Y-axis is a
vertical line in the game world, and the XZ plane is horizontal. Therefore, given a

vector v = (v, v1,vg), verticality is represented by v;. The rest of this thesis will



follow this convention.

Our hyperboloid model is thus represented by the equation

2=1+a2% 42 (3.1)

This defines a hyperboloid of two sheets; our system uses only the positive-Y sheet.

3.1.2 Disk Projections

The hyperboloid model is infeasible for users to interact with in a Fuclidean game
engine. Therefore, we use a projection of the hyperboloid model. The Poincaré
disk model can be obtained by stereographic projection of points on the hyperboloid
through the y = 0 plane to the point (0,—1,0), so a point (a,b,c) is projected to
(55550, 557)- The Klein-Beltrami model can be obtained by projection through the
y = 1 plane to (0,0,0), so a point (a, b, c) is projected to (§,0, 7). These projections
are visualised in Figure 3.1. The Poincaré disk projection is the default projection

used in the Unity game world, although users also have the option of using the Klein-

Beltrami projection.

(a) Projection to the Poincaré disk (b) Projection to the Klein-Beltrami model

Figure 3.1: Projections of the hyperboloid model. From Gagern [16].



3.2 Geometry on the Hyperboloid

Given a vector x = (g, x1, z2) in Minkowski 3-space, the Minkowski quadratic form
is conventionally defined as q(z) = —z2 + 2? + z2. However, because we are using a

Y-up coordinate system, we instead define the quadratic form as
q(z) = —27 + 23 + 25 (3.2)
Similarly, the corresponding Minkowski bilinear form for our system is defined as

p(x,y) = —11y1 + ToYo + T2y (3.3)

The quadratic form ¢ is analogous to taking the squared magnitude of a vector in
Euclidean space; the bilinear form p is analogous to taking the inner product of two
vectors in Euclidean space.

Distances

The distance between two points z,y on the hyperboloid is given by
dist(z,y) = cosh™ ' (=p(z,y)) (3.4)

Normalization

Normalization in hyperbolic space is analogous to Euclidean space. A vector v in

hyperbolic space is normalized by dividing by the square root of its quadratic form.

norm(v) = L (3.5)
lq(v)]
The vector norm(v) satisfies the property that g(norm(v)) = 41. Normalization

preserves angles between vectors.



Angles

Given points A, B, C' on the hyperboloid, the angle ZBAC between the two geodesic
lines 1@ and 1@ is measured by calculating the tangents at the point of intersection.

Let v and w be the tangent vectors. The angle is given by

Zow = cos™! (M) (3.6)

q(v) - q(w)
Note that this is essentially the same as normalizing v and w first, then performing
cos™ ! (p(v, w)).
Translations

A vector v can be translated by t units in the x direction by performing

cosht sinht 0] [vg vgcosht 4+ vy sinh ¢
Ly(t)v = |sinht cosht 0| |v;| = |vgsinht + v cosht (3.7)
0 0 1| |ve U2

Similarly, a translation by t units in the z direction is given by

1 0 0 Vo Vo
Lz(t)v = [0 cosht sinht v1| = |wvgsinht + vy coshit (3.8)
0 sinht cosht| [vy vy cosh t + vy sinh ¢

Translations preserve angles and straight lines.



Rotations

A vector v can be rotated by 6 radians counter-clockwise around the hyperboloid by

performing
cosf 0 —sinf| |vg Vg cos ) — vy sin 0
ROw=|0 1 0 | = v (3.9)
sin@ 0 cos6 Vg Vg sin @ + vq cos 6
Geodesics

The intersection between the hyperboloid and any plane that contains the origin
defines a straight line on the hyperboloid.

Given two basis vectors u and w of the plane that satisfy the properties ¢(u) = 1,
q(w) = —1, and p(u, w) = 0, the following parametric equation defines the geodesic

g passing through v and w.

g(u,w,t) = ucosht 4+ wsinht (3.10)

The value t represents the hyperbolic distance from wu to ¢(t) in the direction of w.
Given two points u and v on the hyperboloid, we can derive the vector w that

satisfies the properties listed above, i.e. p(u,w) =0 and q(w) = —1.

dir(u,v) =w = norm(v — u - p(, U))
q(u)
v — g - Pu)
= 2w (3.11)




Midpoints

The midpoint on the hyperboloid between two points v and v is the point lying on

the geodesic containing v and v and equidistant to v and v. It has a simple formula.

mid(u, v) = norm(u + v) (3.12)

Tangent vectors

Given two points v and v on the hyperboloid, the line tangent to the geodesic con-

taining v and v at point u is defined by

v — U - p(u,v)
() =u+t- a) (3.13)
Vatw —u- )

3.3 Regular Tilings

Hyperbolic space expands exponentially with distance travelled. While this property
is useful for the purpose of exploration, it also becomes impossible to properly rep-
resent every coordinate in a reasonably-sized hyperbolic world using floating-point
numbers. Inspired by the tiling systems used in HyperRogue and Hyperbolica [8, 5],
we use a tiling system so that the system only needs to deal with tiles and coordinates
local to the user.

A tiling consists of regular n-gons, with k of these meeting at each vertex. In order
for an integer pair (n, k) to define a hyperbolic tiling, it must satisfy the inequality
(n —2)(k — 2) > 4. The derivation for this inequality is given in (A.1) in Appendix
A. Users may select any n and k that are valid according to this inequality, with the

system default being (n, k) = (4,5). Figure 3.2 illustrates a (4,5) tiling.



Figure 3.2: A (4,5) regular tiling. From Hyperbolica [5].

3.3.1 Tile Size

The size of each n-gon depends on both n and k - larger values of n and/or k mean
each n-gon must be larger in order for the tiling to work. Given an integer pair
(n, k), suppose that an n-gon centered at (0,1,0) on the hyperboloid has a vertex
vy = (z,v/22 + 1,0) on the hyperboloid. The value of 2 may be calculated in terms

of n and k:

s s
= t2 = cot? - — 1 3.14
x \/co ~ cot® (3.14)

We present our derivation for this equation in (A.2) in Appendix A.

Following this, for an integer pair (n,k), in order to construct the first regular

n-gon on the hyperboloid, we calculate x = \/ cot? %cot2 7 — 1, then place the first
vertex at the point vy = (z, V22 + 1,0). The remaining vertex locations are found by

rotating vy around the hyperboloid in increments of 27”
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3.4 Latent Vector Generation

The tiling system presented in Section 3.3 provides a convenient approach to gener-
ating new samples - each tile corresponds to one latent space vector, each of which
is used by the generative model to generate a sample. The latent space vectors are
sampled using Gaussian process (GP) regression. The posterior covariance between
nearby previously-generated vectors and to-be-generated vectors is calculated based
on the geodesic distance between the corresponding tiles in the hyperbolic world.
Lastly, latent space vectors are drawn from a multivariate Gaussian distribution us-
ing the posterior covariance. As users explore the hyperbolic world, new samples are
generated on nearby tiles that do not already have a sample.

We first define the kernel function k, which takes two sets of coordinates x,z’.
This is a squared exponential kernel with two hyperparameters - the signal variance

0% and the lengthscale /.

k(z,7') = 0% exp (—M) — o2 exp (—COSh_l(_p(m’ x/))z) (3.15)

14 14

Then, given two sets of tile coordinates a and b, we can compute the covariance matrix
K. Let K;; be the value in row ¢, column j of K. Let a; be the i-th coordinate in a
and let b; be the j-th coordinate in b. Then for each K; ;, we calculate K; ; = k(a;, b;).

We then compute three covariance matrices. Let xy be the training points - the
set of m coordinates of nearby tiles that already have a corresponding latent space
vector. Let x; be the testing points - set of n coordinates of new tiles for which we
will generate latent space vectors.

e The training kernel matrix K, uses g, x¢ as inputs and has dimension m x m.

e The training-testing kernel matrix K; uses xg, 7 and has dimension m x n.

e The testing kernel matrix K, uses x1,x; and has dimension n X n.

11



From these matrices we compute the posterior covariance:

Y =Ky, K/K;'K, (3.16)

Let the dimensionality of the latent space be d. Let x be the set of latent space
vectors corresponding to the tile coordinates in a. For each dimension ¢ in the latent

space, slice x by taking s; = [zo[i], z1[i], ..., 2 [i]] T, then compute the posterior mean:

w = KU Kq's: (3.17)

Then sample a vector v; of size n from the multivariate normal distribution N, (u;, ).
Finally, after repeating this process for every dimension i, we obtain d vectors of
size n. We collect these vectors into a matrix with dimension n x d, which gives n new
latent vectors, each of size d. These latent vectors are used to generate the images
corresponding to the n tiles whose coordinates are contained in b.
The hyperparameters to the Gaussian process o? and ¢ affect how similar the
generated images are. These are set by the user and can be altered at any time while

interacting with our system.

3.5 Generative Models

There is a wide variety of generative models to choose from. Recently, diffusion
models such as DALL-E 2 and Imagen [12, 14] have shown impressive performance
on text-to-image generation [11]. However, recent GAN models such as StyleGAN-T
achieve better, more continuous latent space interpolations than diffusion models [15].

The code for StyleGAN-T is not publicly available at the time of writing, so
we instead use LAFITE, an older GAN model with fast generating speed and good

performance on text-to-image generation [20].

12



Chapter 4

Implementation

The hyperbolic world is implemented using the Unity game engine and the C+# pro-
gramming language, and is deployed online using Unity WebGL. Latent vector and
image generation is handled with Python and Flask servers and deployed using Google

Cloud services.

———f

Figure 4.1: A screenshot of images displayed in the hyperbolic world.
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4.1 Transformations

We first introduce two 3 x 3 transformations to be used in the implementation. These

transformations use the translations L,, L, defined in equations 3.7 and 3.8.

T, (w0, 20) = Lw(sinh_l(xo))Lz(Sinh_l (Cosh (sijﬁl (%))» (4.1)

20

cosh(sinh ™' (x))

R..(20,2) = Lz<—sinh_1< ))Lx(—sinh_l(xo)) (4.2)

The transformation T, satisfies the property that, given a point v = (xg, yo, 29) on

the hyperboloid:

0 To
sz(x()v ZO) 1| = Y| =Y
0 20

The transformation R,. performs the reverse transformation of T}, and satisfies the

following property:

To 0
Ry (w0, 20)v = Ry (20, 20) Y| = |1
20 0

T,.. and R,, provide convenient ways to transform points on the hyperboloid to and
from (0,1,0). As both of these transformations are essentially just composites of z
and z translations, we can apply either of them to every point in the hyperbolic world
simultaneously, while preserving all key properties such as distance between points,
straight lines, angles, and so on. These transformations are used in Section 4.2.4 and

Section 4.3.

14



4.2 Tiling System

The tiling system consists of three main types of objects: tiles, vertices, and edges.
Each tile contains a list of its n vertices and n edges, both in counter-clockwise order.
Each vertex contains a list of up to k£ incident edges in counter-clockwise order. Each
edge contains references to the two vertices incident to it and references for up to two

tiles that contain the edge.

4.2.1 Vertex and Edge Creation

We first define the vertex and edge creation process. An edge is created using two
vertices; the edge holds references to the two vertices, and the edge is added to each
of the two vertices’ lists of edges.

Upon creation, a vertex may either be initialized or uninitialized. If uninitialized,
its position is not defined, and its list of edges may contain fewer than k edges. In
order to initialize a vertex, it is given a position, and edges are created to fill its list
to size k; each of these new edges contains the given vertex and a new uninitialized
vertex. Although these new edges and uninitialized vertices have no defined location,
their order in the list still defines their order (i.e. counter-clockwise from each other)

in the hyperbolic world.

4.2.2 Tile Creation

On initialization of the system, the center of the first tile is placed at (0,1,0). The
locations of the vertices of this tile are calculated using the method described in
Section 3.3.1 (Tile Sizes) - the location of the first vertex is calculated based on n and
k, then the remaining vertex locations are found by rotating the first location around
the hyperboloid. The full creation process for the first tile and its corresponding

vertices and edges is described in Algorithm 1.

15



Algorithm 1 Vertex creation for the first tile

1: Input n > n is the number of number of vertices per tile
2: Input £ > k is the number of tiles per vertex
3: procedure CREATETILE(n, k)

4: Define t: the new tile

5: t.center := (0, 1,0)

6: T = \/cot2 Teot? T —1 > Eq. 3.14
7. v := new vertex((z, vz? + 1,0))

8: t.vertices.add(v)

9: e := t.vertices[0].edges[0]

10: e.tiles.add(t); t.edges.add(e)

11: for1<i<ndo

12: v := e.vertex] if v # e.vertex] else e.vertex2 > Get uninitialized vertex
13: v.initialize() > Initialize; create up to k edges and create vertices
14: v.position = new vertex(R(2) t.vertices[i — 1].position) > Eq. 3.9
15: t.vertices.add(v)

16: e := v.prevEdge(e) > v’s previous edge in CCW order
17: e.tiles.add(t); t.edges.add(e)

18: end for

19: t.vertices[0].edges(1) := e > Merge edges
20: e.uninitialized Vertex := t.vertices|0] > Set e’s uninitialized vertex
21: return t

22: end procedure

After creating the first tile, each subsequent new tile is created using a currently-
existing reference tile and reference edge; the new tile contains the reference edge and
is a neighbor to the reference tile. In order to create this tile, we must first discover
all existing edges and vertices, then create new edges and vertices in addition to the
pre-existing ones. The full procedure is described in Algorithm 2.

On line 10 of Algorithm 2 we use a function getVerts that returns an edge’s
vertices in counter-clockwise order relative to an input tile. This function simply
cycles through the tile’s vertices to find the two edge vertices, then returns those two
vertices in the correct order. Although inefficient, this provides a location-agnostic
method for getting the vertices in the correct order, which can handle situations where
the location of the edge is too far away from the origin to be reliably accurate. An

alternative method that returns the vertices in CCW order relative to a given location

16



Algorithm 2 Vertex creation from an existing tile

1: Input ref_tile, ref_edge > Updated reference tile and edge
2: Input n, k

3: procedure CREATEFROMEXISTING (ref_tile, ref_edge, n, k)

4: Define t: the new tile

5: ref_edge.tiles.add(t); t.edges.add(ref_edge)

6: v := ref_tile.center

7: u := mid(ref_edge.vertex1, ref_edge.vertex2) > Eq. 3.12
8:  w:=dir(u,v) =norm(v — u - pq(m)) > Eq. 3.11
9: t.center := g(v,w, 2 - dist(v,u)) > Eq. 3.10

10: vs = ref_edge.getVerts(ref_tile) > gets vertices in CCW order relative to tile
11: v0 := vs[0]

12: vl = vs[1]

13: t.vertices.add(v0)

14: el := vl.nextEdge(ref_edge) > vl’s next edge in CCW order
15: while v0 # v0 and e has uninitialized vertex do > Find existing vertices
16: t.vertices.addFront(v1)

17: vl := el.vertexl if vl # el.vertexl else el.vertex2

18: el.tiles.add(t); t.edges.add(el)

19: el := vl.nextEdge(ref_edge)

20: end while

21: if vl != v0 then > Didn’t fully loop around; need to complete vertices
22: t.vertices.addFront(v1)

23: e2 := v0.prevEdge(e2)

24: e2.tiles.add(t); t.edges.add(e2)

25: d1 := dir(t.center, vs[1].position)

26: d2 := dir(t.center, vs[0].position)

27: d3 := dir(d1, d2) > Direction used to construct new vertex locations
28: T = \/cot2 Teot? T —1

29: for 2 < i < n—t.vertices.size+2 do

30: d4 :=dl -cos(i- %) + d3 -sin(i - 2F)

31: v0 := e2.vertexl if v0 # e2.vertexl else e2.vertex?2

32: v0.initialize() if !v0.initialized

33: v0.position := g(t.center, d4, cosh™' V22 + 1)

34: t.vertices.add(v0)

35: e2 = v0.prevEdge(e2)

36: e2.tiles.add(t); t.edges.add(e2)

37: end for

38: merge(el, e2) > Similar to merging process in CREATETILE(())
39: end if

40: return t

41: end procedure

17



on the hyperboloid is shown in Algorithm 3.

Algorithm 3 Location-based method for returning two vertices in CCW order

1: Input vertexl, vertex2 > The two vertices
2: Input [ > [ is the relative location for the vertices
3: procedure GETVERTS(vertex1, vertex2, [)

4: v1 := proj(vertexl.position) - proj(l.position) > Projection from Sec. 3.1.2
5: v2 := proj(vertex2.position) - proj(l.position)

6: al := atan2(vl.z, v1.x)

7 a2 := atan2(v2.z, v2.x)

8: a3 := (a2 -al + 2m) % (2n)

9: if a3 > 7 then

10: return {vertex2, vertexl}

11: else

12: return {vertexl, vertex2}

13: end if

14: end procedure

4.2.3 Setting Vertex Locations

Given a tile with its location and its corresponding vertex positions that are all
known to be accurate, Algorithm 4 defines the process for determining and setting
the location and the vertex positions of an existing adjacent tile, i.e. a tile that shares
an edge with the given one. This is similar to part of Algorithm 2 - we first update
the center, then wrap around the to-be-updated vertices and set their locations using
a calculated direction vector.

There are two alternate methods for setting vertex locations. Both of these rely
on the locations of all of the reference tile’s vertices. The first method wraps CCW
around the to-be-updated tile and simultaneously wraps CCW around the reference
tile; updated vertex locations are calculated by drawing geodesic lines from vertices
on the reference tile through the midpoint of the reference edge. The second method
wraps CCW around the to-be-updated tile and clockwise around the reference tile; up-
dated vertex locations are essentially calculated by reflecting across the edge. Specif-

ically, given a reference vertex v and u = norm(ref_tile.center - updated_center), the
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Algorithm 4 Setting adjacent tile positions

1: Input ref_tile, ref_edge > Updated reference tile and edge
2: procedure SETVERTEXLOCS(ref _tile, ref_edge)

3: Define t: the current tile

4: v := ref_tile.center

5: u := mid(ref_edge.vertex1, ref_edge.vertex2)

6: w = dir(u,v) = norm(v — u - 17(5?_7;1)1))

7 t.center := g(v, w, 2 - dist(v, u))

8: v0, v1 := ref_edge.getVerts(ref_tile)

9: e := v0.prevEdge(ref_edge)

10: d1 := dir(t.center, v1.position)
11: d2 := dir(t.center, v0.position)
12: d3 := dir(d1, d2)

13: x = y/cot> Zcot? £ — 1

14: for 2 <i<ndo

15: d4 :=d1 -cos(i- 2) 4 d3 -sin(i - 2%)

16: v0 := e.vertexl if v0 # e.vertexl else e.vertex?2
17: v0.position := g(t.center, d4, cosh™' /z2 + 1)
18: e = v0.prevEdge(e)

19: end for

20: end procedure

corresponding location is calculated as v — 2p(v,u) - u.
We do not use either of these two methods in our system. This is because they
are empirically less accurate than the one in Algorithm 4, as they rely on all of the

reference tile’s vertex locations and perform calculations across larger distances.

4.2.4 Updating and Expansion

At any given moment, the user will be standing on a tile, which we will refer to as
the current tile. As the user moves around (Section 4.3), at every frame the current
tile’s position must be updated along with its vertex locations. Additionally, during
movement, the rotation of the world constantly changes as a byproduct of the space
being hyperbolic. As a result, we must keep track of an angle #, which is used to
rotate the vertex locations.

The algorithm for updating the current tile is described in Algorithm 5. We set
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the tile’s position by transforming (0,1, 0) using an up-to-date position vector. We
initialize the first vertex’s position using the method described in Section 3.3.1 (Tile
Sizes), then rotate it around the hyperboloid to get the positions of all other vertices.
Finally, we transform all vertices using the same transform that was applied to the

tile center.

Algorithm 5 Updating current tile and vertex locations

1: Input ¢ > t is the current tile
2: Input p > p is the updated position of the tile’s center
3: Input ¢ > 6 is the updated angle of the tile

4: procedure UPDATECURRENTTILE(?, p, 6)

5: t.center ;== T,,(p.z,p.z) (0,1,0)

6: vy, Vg, ..., U, < locations of the vertices of ¢
7: T = \/cot2§(:ot2%—1

8: vy = R(0) (z,v/22+1,0)"

0: for 2 <i<ndo

10: v = R(E) v;4

11: end for

12: for 1 <i<ndo

13: v; = To.(px,p.2) v;

14: end for
15: end procedure

After updating the current tile, we expand to neighboring tiles, updating or cre-
ating tiles along the way. We perform a breadth-first search (BFS) starting at the
current tile and expanding outwards. The BFS stops upon reaching tiles that are
further away on the hyperboloid from (0, 1,0) than a given distance - this distance
may be changed by the user to fit performance or visualization needs.

Every tile that the BF'S reaches has its location and its vertex locations updated
using Algorithm 4. These tiles are then rendered into the hyperbolic world; any tile
not reached by the BFS is not updated, and is thus not rendered.

The expansion process is detailed in Algorithm 6.
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Algorithm 6 Expanding outwards

1: Input ¢ > t is the updated current tile
2: Input r > 7 is the maximum distance to expand to
3: procedure EXPAND(t, 1)

4: queue := {t}

5: while !queue.isEmpty() do

6: t1 := queue.pop()

7 if dist((0,1,0),t;) > r then continue

8: end if

9: for edge e € t,.edges do
10: if enumTiles == 2 then > Case: t; has a neighbor t, via e
11: ty := e.tilel if t; # e.tilel else e.tile2
12: else > Case: need to create a new tile ¢y
13: to := CREATEFROMEXISTING(11, €)
14: end if
15: if lt5.isUpdated then > Update and add t, to queue if needed
16: ty.isUpdated = True
17: SETVERTEXLOCS(2, €)
18: queue.add(ts)
19: end if
20: end for
21: end while

22: end procedure
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4.2.5 Mitigating Inaccuracy

Updating all tile and vertex locations as previously described leads to inaccuracies
that quickly compound when expanding positions far away from (0, 1,0) on the hy-
perboloid. This causes problems at moderate render distances, even when using
double-precision numbers. To solve this issue, every time we calculate a new position
for a tile or a vertex, we normalize it to the hyperboloid (Eq 3.5). Doing so allows

calculations to remain accurate even at extreme distances on the hyperboloid.

4.3 Movement

When in the hyperbolic world, users may move forward, backward, left, and/or right
via keyboard input, and can look around via mouse input. At all times, the system
tracks the user’s position u and the direction ¢ € [—m, 7] that the user is facing. The
system also tracks the tile that the user is standing on. On initialization, the user is
positioned at (0, 1,0) on the hyperboloid.

We define a constant m to be the movement speed. During any frame, if the
user is pressing the input to go forward, their position is moved from u to g(u, d, m)
(Eq 3.10), where d = (cos ¢, 0,sin ¢) is the direction vector that is defined by ¢ and
is tangent to the hyperboloid at (0, 1,0). Likewise, if the user is moving backward,
their position is moved from u to g(u,d, —m). If the user is moving right, their new
position is g(u,r,m)), where r = (cos(¢ — 7),0,sin(¢ — 7)) is the direction to the
right of where the user is facing. If the user is moving left, their new position is
g(u,r, —m).

At every frame, the system checks to see if the user has moved away from (0, 1, 0).
If so, we apply the transform R,.(u.,u,) to the entire world, which moves the user
back to (0,1,0) and moves all tiles accordingly. We calculate the new position of the

current tile by applying R, (u.,u,) to its current position. We additionally update

22



the tile angle 6 as follows:
1. Select the first vertex in the current tile’s list of vertices.
2. Apply R, (us,u,) to the location of this vertex. Let the result be v.

3. Calculate v = R,,(ps, p.)v, where p is the newly-calculated position of the

current tile.
4. Set 6 = atan2(v,, v,).

This allows the updating algorithm to correctly set the current tile’s vertex locations.
If we do not set the angle during movement then the user’s direction will constant
changing during movement, even without mouse input.

Finally, if there exists a tile that is closer to the user than the current tile, we set

that tile to be the new current tile. We update the new tile’s angle as follows:
1. Select the first vertex in the new current tile’s list of vertices.
2. Calculate v = R,.(ps, p.), where p is the position of the current tile.

3. Set 6 = atan2(v,,v,).

4.3.1 Accounting for Frame Rate

Different systems may have different performance when running the system. Since
user position updates are done every frame, users with lower frame rates will move
slower through the world than users with higher frame rates under the currently
defined constant m movement speed. To account for this, we divide m by the frame

rate, which we calculate by keeping track of the time elapsed between frames®.

'There is no built-in way to track frame rate in the Unity game engine.
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4.4 Tile Grouping

Let two tiles ¢, ts be adjacent if they share either an edge or a vertex. We determine

if ¢1,t, are adjacent by measuring the distances between their centers. Using the

equation for determining tile size (3.14), let x = \/ cot? Zcot? T — 1. Then ¢; and t,
are adjacent if the distance between the two tile centers is less than 2-cosh™ Va2 + 1+
¢ for some small value? of € such as e = 1075, Intuitively, the value cosh™ V22 +1
measures the distance from a tile’s center to any of its vertices.

Whenever the user enters a tile that doesn’t already have an associated latent
vector, that tile and all adjacent tiles that also have no associated image are grouped
together. Their locations on the hyperboloid are batched into a set of testing points
for Gaussian process regression. The positions of all currently-updated tiles that do
have an associated latent vector are used as training points, with the latent vectors
used as labels. The testing points, training points, and labels are all sent in an HT'TP
request to a Flask server; newly-generated latent vectors and images are then sent
back.

Our system additionally allows users to group together all nearby vector-less tiles
with a button press, even if the current tile already has a vector. The current tile is

not included in the grouping in this case.

4.5 Model Deployment

As mentioned in Section 3.5, we use the LAFITE model [20] to generate images.
This model is housed by a Flask server; the model and server are built into a Docker
container, which is then uploaded to Google Vertex Al [7], which exposes an endpoint
that can receive HT'TP requests.

A Unity client can then send data to this endpoint; the data consists of tile

2The purpose of € is to deal with potential floating-point inaccuracies.
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coordinates and latent vectors, which are formulated in a JSON object as training
points, labels, and testing points as described in Section 4.4. The server receives the
data and performs GP regression to generate latent vectors for the testing points,
then generates the corresponding images using the LAFITE model. The images are
binary-encoded to the Base64 format and are sent along with the latent vectors to
the Unity client via HT'TP response - the client decodes and renders the images and
stores the new latent vectors to be used as future training labels. Figure 4.2 provides

a high-level overview of this workflow.

. HTTP request
- WebGL user Train points: pr, pa,ps € R? > Google Cloud host

Train labels: vy, vy, v3 € B2

Test points: ps, ps,ps € R?
-
@ Unity >
<€

Hyperbolic world Generated vectors: vs, vy, v5 € R712 GP & Generative model

Generated images (Base64-encoded)

HTTP response

Figure 4.2: High-level overview of a typical HT'TP workflow.

Note that sending a request to this endpoint requires a Google Cloud service
account with an associated private key. In order to prevent Unity users from having
direct access to this key, we use an additional Flask server that serves as a midpoint
between the Unity client and the Vertex AI model server. This midpoint server
forwards data to and from the Unity client and the model server; it uses the private
key and the Vertex Al Python API to query the endpoint. This server is deployed to

Google App Engine [6].
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Chapter 5

Evaluation

A practical use for our project is for searching through a latent space in order to
generate various types of high-quality content such as images or 3D models. We
evaluate our system by performing multiple simulated experiments where we attempt
to find a target latent vector and/or image in the latent space by moving through the
hyperbolic world; we compare the similarities between target outputs and ultimately-
generated outputs. These experiments simulate human-in-the-loop exploration and
optimization of models in the hyperbolic world.

The first set of experiments involves randomly generating a target vector and ini-
tializing the world with random latent vectors - we experiment with various different
latent space dimensionalities to assess the effectiveness of our system at both low
and high dimensions. The second set of experiments utilizes the LAFITE model’s
text-to-image capabilities to initialize the world with vectors/images that are already
close to a the target. Finally, we experiment with increasing n and/or k in the tiling

system to determine the effectiveness of the use of hyperbolic space in our system.
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5.1 Random Targets and Initialization

In the first experiment, we generate a target image using a randomly-generated 512-
dimensional unit vector, then use the hyperbolic world with (n, k) = (4,5) to attempt
to find the closest image to the target. Specifically, for multiple iterations we (1)
generate images for all adjacent tiles that do not already have an associated image,
then (2) move to the tile with the closest associated latent vector to the target vector
in terms of cosine distance (Equation 5.1). When comparing cosine distances, we only
use vectors generated in the current iteration. We use cosine distance as a similarity
metric rather than, say, Euclidean distance because Euclidean distance and other

p-norms tends to lose meaning at higher dimensionalities [10].

512
u-v Zz lu'vi

||U||||UH \/2512 \/235121 2
1= ’l

Latent vectors are initialized randomly in the first iteration. The coordinates of the

Dc<u, U) =1-

(5.1)

origin tile and all adjacent tiles are used to create a kernel matrix K using the method
described in Section 3.4 (Latent Vector Generation). The Cholesky decomposition of
this matrix is multiplied by a ¢ X d matrix with values drawn from N(0, 1), where ¢
is the number of coordinates and d is the latent space dimension. Each row of the
result is normalized to the d-sphere before being used as a latent vector because the
LAFITE model requires normalized input vectors.

Across several initial experiments with a static signal variance of o2 = 0.0022, we
find that the cosine distance quickly decreases within the first few iterations, but then
plateaus at around Do = 0.7. With a static signal variance of 02 = 0.0012, the cosine
distance decreases at a slower rate and plateaus much later at around Do = 0.45
after many iterations (Figure 5.1).

Therefore, during the experiment, whenever the cosine distance between the target

vector and the closest recently-generated latent vector increases for three consecutive
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Figure 5.1: Cosine distances between target vector and closest generated vector for
different o2 values.

iterations, we reduce the signal variance by setting o = o/v/2. This method simu-
lates the user balancing the exploration-exploitation tradeoff during the optimization
process in a similar fashion to Zhou et al [19]. The process begins with a higher o
in order to explore more, then the user may decrease o as they get closer to their
target output. The signal variance for the GP in this experiment is initialized to
0% = 0.0022, and the lengthscale is set to ¢ = 2.0; these values work well for the
512-dimensional latent space based on multiple trial runs.

Figure 5.2 shows a sample target image, as well as the final output after 500
generative iterations in the hyperbolic world. These two images are visually similar
and share multiple visual features. Figure 5.3 shows every tenth image generated over
the first 200 iterations, allowing us to visualise how the intermediate images gradually

become more similar to the target image.
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(a) Target image (b) Final generated image

Figure 5.2: Comparison of target image and the closest generated output.

L PR

|

Figure 5.3: Images generated over the first 200 iterations.
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In addition to recording the cosine distances for the 512-dimensional latent vectors
used by LAFITE, we perform the same experiment and record the distances using la-
tent vectors that have 256, 128, 64, and 32 dimensions. These distances are visualised
in Figure 5.4 for each dimension listed. Note that when using 32-dimensional latent
vectors, we instead initialize the signal variance to be o2 = 0.0052, which allows the
cosine distance to converge more quickly than when using 02 = 0.0022. Increasing the
initial signal variance did not make a significant difference on larger dimensionalities.

Figure 5.4 illustrates a weakness in our system. Bayesian optimization is known
to not scale well to high-dimensional spaces, i.e. spaces with greater than 10 or 20
dimensions, due to the exponentially-increasing amount of space that needs to be
covered [17, 3, 18]. While our system quickly converges to the target vector in a
32-dimensional latent space, it requires hundreds of iterations to attain good results

at much higher dimensions such as 512.

Cosine distance from target latent vector
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— 128
08 ] —
32

0.7
0.6

0.5

Cosine distance

0.4

0.3

0.2

01

0.0 )
0 100 200 300 400 300
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Figure 5.4: Cosine distances between target vector and closest generated vector for
different dimensionalities.
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5.2 Focused Initialization

The LAFITE model is capable of generating latent vector embeddings for input sen-
tences. This allows users of our system to initialize the first image to be much closer
to their target vector than if it were initialized randomly. Therefore, we perform an-
other experiment to analyze the effectiveness of our system in this scenario. We first
generate a vector embedding for the sentence ” A crowd watching baseball players at
a game.” To create a target, we add a noise vector n drawn from the distribution
n ~ Ns12(0,0.05) to the embedding, then normalize the output to the 512-sphere.
This simulates a scenario where a user imagines an image, then starts the exploration
process with a fairly similar image by inputting a descriptive sentence. The imagined
image uses the vector embedding with added noise, while the starting image uses the
vector embedding alone.

We ran this experiment with multiple values of o; the cosine distances for each
o value are plotted in Figure 5.5. We see that the initial value for o can make a
significant difference at early iterations, although after many iterations the difference
is mostly mitigated. Additionally, we are ultimately able to get significantly closer to
the target output in terms of cosine distance (D¢ = 0.15) than when using random
initialization (D¢ ~ 0.25).

The initial image generated from the sentence, the target image, and the final
generated image from the run with ¢ = 0.001 are shown in Figure 5.6. The base
image for the sentence “A crowd watching baseball players at a game” is visually
somewhat similar to the noisily-generated target image; the target image and the
final output are visually very similar and share many visual features, such as the
layout of the grass and dirt, as well as the positions and shapes of the people on the

dirt and in the background.

31



0.4

o
[45]

Cosine distance
o
(L%

01

0.0

Cosine distance from target latent vector

sigma

0.0020

0 100 200 300 400 500
lteration

Figure 5.5: Cosine distances when using targeted initialization.

(a) Initial image (b) Target image (c) Final generated image

Figure 5.6: Initial image, target image, and the closest generated output.
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5.3 Increasing n and k

To make full use of the hyperbolic world and the tiling system, a user may use
different values for n and k. We perform the same simulated experiment as Section
5.1 (Random Targets and Initialization), but rather than using (n,k) = (4,5), we
instead use (4,6), (4,7), (5,5), (6,5), (6,7). Each of these pairs represents an increase
in n and/or an increase in k from the (4, 5) pair that was used previously. We use an
initial signal variance of o = 0.002 and increase the lengthscale as n and k increase,
based on the formula for tile size in Equation 3.14.

The recorded cosine distances are shown in 5.7. We see that as we increase n
and/or k, the cosine distance decreases more quickly at earlier iterations and even-
tually converges to lower values after many iterations. This makes intuitive sense, as
with an increased (n, k) we can generate more samples at a time and explore more of
the hyperbolic world at each iteration.
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Figure 5.7: Cosine distances for various (n, k), and ¢ values.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This work introduces an application for exploring generative models in hyperbolic
space. We define a set of geometric functions and a tiling system for the hyperboloid
model of hyperbolic geometry. We implement the hyperbolic world in the Unity game
engine and link the hyperbolic world with a Flask server that uses GP regression to
produce output images from the LAFITE generative model. Finally, through multiple
simulated experiments, we find that our system can reliably, albeit slowly, find target
outputs through exploration of the hyperbolic world.

There are currently few resources available that detail the steps necessary to sim-
ulating hyperbolic space. This report and the associated code serves as a simple,
working example of a simulation of hyperbolic space, and may be used as a start-
ing point for those interested in modeling hyperbolic space and exploring ways to

optimize generative models within hyperbolic space.
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6.2 Limitations and Future Work

The biggest limitation of our system is its poor scalability to high dimensions, al-
though increasing the number of vertices per tile and/or increasing the number of
tiles per vertex can help mitigate this issue. A potential path of future work is to
utilize a method to reduce the dimensionality of a high-dimensional latent space in
order to allow users to converge more quickly to target outputs; for instance, the work
done by Zhou et al. involves training a VAE to reduce the latent space of a music
VAE from 512 to 4 dimensions [19].

Additionally, we only performed simulated experiments, which do not necessarily
translate to practice. In a simulated experiment our system always chooses the op-
timal action towards a stationary target; real users’ judgment of output quality may
be unclear or even change during exploration.

In the Unity implementation of the hyperbolic world, vertices are projected to
the correct locations on the Poincaré disk; however, edges remain straight in this
projection when they should be curved. This is a result of only specifying projected
vertex locations; future work could add curvature to the edges.

As part of this project, we have implemented several image generation models,
with LAFITE being the currently-deployed model. Future work could add more
models that generate various high-quality content beyond images, such as 3D models
or melodies, and additionally deploy more than one model at a time for users to

choose from.
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Appendix A

Proofs

A.1 Derivation for Valid (n, k) Hyperbolic Tilings

Given k regular n-gons meeting at one point, the sum of the interior angles of each
n-gon vertex meeting at that point is £ - ”7_27?. If this quantity is equal to 27 then

(n, k) defines a tiling in Euclidean space; if it is less than 27 then it is a spherical

tiling; if it is greater than 27 then it is a hyperbolic tiling.

3
V
N}
3

[a—y
|
S
V
IO oo

nk >

~
N

e}

nk —2n — 2k >
nk—2n—-2k+4 > 4

(n—2)(k-2) > 4 (A.1)
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A.2 Derivation for Tile Size Given (n, k)

Let 0 = 27” By rotating this vertex counterclockwise around the hyperboloid by 6
and —0, we obtain v; = (z cosf, V22 + 1, zsinf) and vy = (2 cosd, v/x2 + 1, —x sin ),
the two vertices adjacent to vy. As described in Section 3.2, the angle between the
line containing vy, v; and the line containing vy, v, at the intersection point vy is
given by cos™! (w1, ws), where wy,w, are the tangent vectors to the two lines at vy.

Additionally, since there are k n-gons meeting at vy, this angle must be equal to

We first calculate w; and ws.

p(vo, 1)
q(v1) )
= norm((z + 2%)(cos @ — 1), Va2 + 1(2*(cos§ — 1)),z sin §)
((z + 23)(cos O — 1), Va? + 1(2*(cos @ — 1)), z sin )
\/q (((z + 2%)(cos 6 — 1), Vo + 1(z2(cos § — 1)), zsin b))
((z + 23)(cos 0 — 1), Va2 + 1(2*(cos — 1)),z sin )
V= (22 + 1)z*(cos 0 — 1)2 + (z + 23)2(cos ) — 1)2 + x2sin* 0
((z + 23)(cos 0 — 1), Va2 + 1(z*(cos 0§ — 1)), zsin 6)
V(24 4 22)(cos§ — 1)2 + 22 sin’ 0
(14 2*)(cos@ — 1),v/x2 + 1(x(cosf — 1)),sin )
V(22 4+ 1)(cos @ — 1)2 + sin* 0

w1 = norm (Ul — 1 -

Applying the same process for wq, we get

(14 2*)(cos @ — 1), Va2 + 1(x(cos 6 — 1)), —sin )
V(22 4+ 1)(cos @ — 1)2 + sin® 0

Wy =
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Calculating the angle between w; and ws:

cos¢p = plwy,ws)
—(z% + 1)z%(cos§ — 1)? + (2% + 1)%(cos§ — 1)? — sin?

(2 +1)(cosf — 1)2 4 sin? @
(2% +1)(cosf — 1)% — sin? 0
(22 +1)(cosf — 1)2 + sin? @

Finally, solving for x:

cos ¢((z* + 1)(cos — 1)* +sin?0) = (2? +1)(cosd — 1)* —sin* 0

2 ((cos¢ — 1)(cosf — 1)?) = —(cos¢ — 1)(cos# — 1)* — cos ¢sin*# — sin® §

9 —(cos ¢ — 1)(cos® — 1)? — cos ¢ sin® § — sin? §

€T _=

(cos¢ — 1)(cosh — 1)
— cos ¢sin? @ — sin? 0
~(cosd —1)(cosf —1)2
sin?f(cos ¢ + 1)
(1 —cos¢)(cosf —1)2
sin?f 1+ cos¢
(cos® —1)21 —cos¢
¢

0
= cot? 5(30t2 5 -1

T T
x = \/cot2—00t2——1
n k
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