Dementia Diagnosis with Deep Convolutional Neural Networks

Ethan Liu, Raymond Liu Crescent Valley High School

Methodology

- Our methodology:
 - Deep convolutional neural network (CNN) followed by support vector machine (SVM).
 - Deep CNNs consist of many layers.
 - Each layer consists of many neurons
 - Neurons implement a mathematical function
 - Each neuron consists of "weights" which are learned (adjusted) by a process called backpropagation
 - An linear SVM model is trained to combine results of all 2D slices
 - Activations of penultimate layers from CNN are concatenated to form training samples for SVM classifier
 - This increases the overall accuracy of our method
 - ~55% -> 65.3% accuracy

- ADNI cross-sectional dataset

 All 3D MRI scans

 Filtered by age >= 65

 Over 2000 scans
- Example 2D slices created from 3D scans:

Challenges

- A lack of sufficient data leaves the network prone to overfitting or inaccuracy
- **Solution:** Split 3D scans into many (176) 2D slices. Afterwards, combine the classification results via SVM.
 - Each slice still contains unique visual cues
 - Allows us to train a very powerful, accurate, and deep 2D CNN with a limited amount of data

Background

- About 15% (48 million) of America's population is aged over 65 years
- Approximately 47.5 million people worldwide with dementia
- It is estimated that 7.7 million new cases of dementia are discovered every year
- Stages of dementia: Clinical Dementia Rating (CDR)
 - 0 = healthy
 - 0.5 = at risk
 - 1 = mild dementia
 - 2 = moderate dementia
 - 3 = severe dementia
- Diagnosis: performed by radiologists
 - Often time-consuming,
 complicated, and puts lots of stress on patients

Goals

What if an accurate diagnosis could be performed using only a patient's MRI scans?

 The goal of this project is to develop a fast and accurate method for dementia diagnosis using 3D MRI scans

Results

- Results of the system:
 - Final accuracy = 65.3%
 - Random guess = 20%
 - Radiologist = 69 ± 10 %

Conclusions

- Model can make accurate diagnoses on par with modern radiologists
- Currently, development of the network is bottlenecked by the amount of data available
- With more data, our method will become more accurate as it processes increasing amounts of information

Future Work

- Final accuracy of 65.3% on a held out test set of 3D slices.
- The ultimate goal of this project is to give doctors the ability to make an early diagnosis or estimate the probability that a person will develop dementia years before they actually start showing symptoms