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Abstract

Generative models are powerful machine learning models that have the ability to

probabilistically generate unique, realistic samples of data. These models can generate

anything from hyper-realistic images of faces to 3D models of chairs. Recent publicly-

available generative models such as ChatGPT and DALL-E have gained widespread

attention and usage. However, generative models often have high-dimensional latent

space representations of the data, which results in the latent space vectors used to

generate outputs being difficult to interpret.

In this paper, we introduce an application for exploring generative models in

hyperbolic space. We adopt the hyperboloid model of hyperbolic geometry and im-

plement a regular tiling system for this model. We implement the hyperbolic world

in the Unity game engine and link the hyperbolic world with a Flask server that

produces output images from LAFITE, a state-of-the-art generative model. Finally,

we run simulated experiments to evaluate the effectiveness of our system as a tool for

human-in-the-loop optimization of generative models of varying dimensions.

This project is published online1 using Unity WebGL.

Code for the Unity implementation is available at:

https://github.com/rl27/MercatorUnity

Code for the model server and the midpoint server is available at:

https://github.com/rl27/MercatorUnityServer.

1https://play.unity.com/mg/other/build-rj5-1
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Chapter 1

Introduction

Generative models are machine learning models that have the powerful ability to learn

the features of a given set of data, then use these features to probabilistically generate

unique, realistic samples. These models can generate a wide variety of high-quality

content such as hyper-realistic images of faces, 3D models of chairs, and melodies.

Recent publicly-available generative models such as ChatGPT and DALL-E have

gained widespread attention and usage. However, generative models can have high-

dimensional latent space representations of the data, which results in the latent space

vectors used to generate outputs being difficult to interpret.

In this thesis, we introduce a system that allows users to visualize and exploring

correlated outputs from generative models in hyperbolic space. Unlike Euclidean

space, hyperbolic space expands exponentially due to having negative curvature,

which makes it far less limiting than Euclidean space to explore, and can poten-

tially allow a user to explore an enormous distance in a short period of time. Our

system makes use of this by displaying generated images in a simulated hyperbolic

world, with outputs being correlated to each other based on distance within the

world. Users can easily and intuitively visualise correlated outputs and attempt to

find desired outputs through exploration of this world.
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Chapter 2

Background and Related Work

Hyperbolic space is a generally under-explored topic, but there have been a few

prominent simulations of hyperbolic space. HyperRogue, originally released in 2011,

is a 2D roguelike video game played from the top-down perspective that allows players

to explore an infinitely-generated hyperbolic world [8]. Hyperbolica, released in 2022,

is a 3D puzzle video game that similarly takes place in a hyperbolic world [5]. While

these projects focus on the novelty of hyperbolic geometry, we additionally focus on

applications of generative models.

Interactive optimization of latent spaces is something that has been tackled in

many different ways and with many different kinds of content. The work of Zhou et

al. involved displaying four probabilistically generated melodies at a time, with users

selecting a melody to then use to generate four more, with there being a slider to

control exploration vs. exploitation [19, 18]. Chiu et al. used generated images of

faces with a slider to search over 1D subspaces of the latent space [3], while Chong

et al. allowed users to edit images of faces before generating more [4]. Brochu et al.

used generated animations and allowed users to tune a variety of parameters [2]. In

this work, we introduce a new system that uses regular tilings in hyperbolic space

with image outputs, although theoretically our work could be extended to generate
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and display any kind of output.

Many other latent space visualizations are static and represented on 2D scatter

plots, either directly using two intrinsic latent dimensions or using axes from di-

mensionality reduction methods such as t-SNE or PCA [9]. They do not allow for

exploration of the latent space, and the representation can easily be incorrect or mis-

interpreted due to its lack of dimensionality and the latent spaces’ lack of physical

units, leaving the original latent space vague [1]. Our system aims to address this

problem through the use of an explorable hyperbolic world.
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Chapter 3

Approach

3.1 Hyperbolic Geometry

3.1.1 The Hyperboloid Model

There are many different models of hyperbolic geometry, including the Poincaré disk,

the Poincaré half-plane, Klein-Beltrami, the hemisphere, and the hyperboloid. Each

model has its own advantages and disadvantages. For instance, the Poincaré disk

preserves angles, but lines are arcs and can appear curved. On the other hand,

Klein-Beltrami preserves straight lines, but not angles.

We chose to use the hyperboloid model of hyperbolic geometry internally, as it

is an intuitive, easy-to-understand model with multiple analogs to Euclidean and

spherical geometry. Subsequent sections and described implementations will also use

the hyperboloid model.

Coordinate System Convention

The Unity game engine uses a Y-up coordinate system, meaning the Y-axis is a

vertical line in the game world, and the XZ plane is horizontal. Therefore, given a

vector v = (v0, v1, v2), verticality is represented by v1. The rest of this thesis will
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follow this convention.

Our hyperboloid model is thus represented by the equation

y2 = 1 + x2 + z2 (3.1)

This defines a hyperboloid of two sheets; our system uses only the positive-Y sheet.

3.1.2 Disk Projections

The hyperboloid model is infeasible for users to interact with in a Euclidean game

engine. Therefore, we use a projection of the hyperboloid model. The Poincaré

disk model can be obtained by stereographic projection of points on the hyperboloid

through the y = 0 plane to the point (0,−1, 0), so a point (a, b, c) is projected to

( a
b+1

, 0, c
b+1

). The Klein-Beltrami model can be obtained by projection through the

y = 1 plane to (0, 0, 0), so a point (a, b, c) is projected to (a
b
, 0, c

b
). These projections

are visualised in Figure 3.1. The Poincaré disk projection is the default projection

used in the Unity game world, although users also have the option of using the Klein-

Beltrami projection.

(a) Projection to the Poincaré disk (b) Projection to the Klein-Beltrami model

Figure 3.1: Projections of the hyperboloid model. From Gagern [16].
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3.2 Geometry on the Hyperboloid

Given a vector x = (x0, x1, x2) in Minkowski 3-space, the Minkowski quadratic form

is conventionally defined as q(x) = −x2
0 + x2

1 + x2
2. However, because we are using a

Y-up coordinate system, we instead define the quadratic form as

q(x) = −x2
1 + x2

0 + x2
2 (3.2)

Similarly, the corresponding Minkowski bilinear form for our system is defined as

p(x, y) = −x1y1 + x0y0 + x2y2 (3.3)

The quadratic form q is analogous to taking the squared magnitude of a vector in

Euclidean space; the bilinear form p is analogous to taking the inner product of two

vectors in Euclidean space.

Distances

The distance between two points x, y on the hyperboloid is given by

dist(x, y) = cosh−1(−p(x, y)) (3.4)

Normalization

Normalization in hyperbolic space is analogous to Euclidean space. A vector v in

hyperbolic space is normalized by dividing by the square root of its quadratic form.

norm(v) =
v√
|q(v)|

(3.5)

The vector norm(v) satisfies the property that q(norm(v)) = ±1. Normalization

preserves angles between vectors.
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Angles

Given points A,B,C on the hyperboloid, the angle ∠BAC between the two geodesic

lines
−→
AB and

−→
AC is measured by calculating the tangents at the point of intersection.

Let v and w be the tangent vectors. The angle is given by

∠vw = cos−1

(
p(v, w)√
q(v) · q(w)

)
(3.6)

Note that this is essentially the same as normalizing v and w first, then performing

cos−1(p(v, w)).

Translations

A vector v can be translated by t units in the x direction by performing

Lx(t)v =


cosh t sinh t 0

sinh t cosh t 0

0 0 1



v0

v1

v2

 =


v0 cosh t+ v1 sinh t

v0 sinh t+ v1 cosh t

v2

 (3.7)

Similarly, a translation by t units in the z direction is given by

Lz(t)v =


1 0 0

0 cosh t sinh t

0 sinh t cosh t



v0

v1

v2

 =


v0

v2 sinh t+ v1 cosh t

v2 cosh t+ v1 sinh t

 (3.8)

Translations preserve angles and straight lines.
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Rotations

A vector v can be rotated by θ radians counter-clockwise around the hyperboloid by

performing

R(θ)v =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



v0

v1

v2

 =


v0 cos θ − v2 sin θ

v1

v0 sin θ + v2 cos θ

 (3.9)

Geodesics

The intersection between the hyperboloid and any plane that contains the origin

defines a straight line on the hyperboloid.

Given two basis vectors u and w of the plane that satisfy the properties q(u) = 1,

q(w) = −1, and p(u,w) = 0, the following parametric equation defines the geodesic

g passing through u and w.

g(u,w, t) = u cosh t+ w sinh t (3.10)

The value t represents the hyperbolic distance from u to g(t) in the direction of w.

Given two points u and v on the hyperboloid, we can derive the vector w that

satisfies the properties listed above, i.e. p(u,w) = 0 and q(w) = −1.

dir(u, v) = w = norm(v − u · p(u, v)
q(u)

)

=
v − u · p(u,v)

q(u)√
q(v − u · p(u,v)

q(u)
)

(3.11)
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Midpoints

The midpoint on the hyperboloid between two points u and v is the point lying on

the geodesic containing u and v and equidistant to u and v. It has a simple formula.

mid(u, v) = norm(u+ v) (3.12)

Tangent vectors

Given two points u and v on the hyperboloid, the line tangent to the geodesic con-

taining u and v at point u is defined by

l(t) = u+ t ·

 v − u · p(u,v)
q(u)√

q(v − u · p(u,v)
q(u)

)

 (3.13)

3.3 Regular Tilings

Hyperbolic space expands exponentially with distance travelled. While this property

is useful for the purpose of exploration, it also becomes impossible to properly rep-

resent every coordinate in a reasonably-sized hyperbolic world using floating-point

numbers. Inspired by the tiling systems used in HyperRogue and Hyperbolica [8, 5],

we use a tiling system so that the system only needs to deal with tiles and coordinates

local to the user.

A tiling consists of regular n-gons, with k of these meeting at each vertex. In order

for an integer pair (n, k) to define a hyperbolic tiling, it must satisfy the inequality

(n − 2)(k − 2) > 4. The derivation for this inequality is given in (A.1) in Appendix

A. Users may select any n and k that are valid according to this inequality, with the

system default being (n, k) = (4, 5). Figure 3.2 illustrates a (4, 5) tiling.
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Figure 3.2: A (4,5) regular tiling. From Hyperbolica [5].

3.3.1 Tile Size

The size of each n-gon depends on both n and k - larger values of n and/or k mean

each n-gon must be larger in order for the tiling to work. Given an integer pair

(n, k), suppose that an n-gon centered at (0, 1, 0) on the hyperboloid has a vertex

v0 = (x,
√
x2 + 1, 0) on the hyperboloid. The value of x may be calculated in terms

of n and k:

x =

√
cot2

π

n
cot2

π

k
− 1 (3.14)

We present our derivation for this equation in (A.2) in Appendix A.

Following this, for an integer pair (n, k), in order to construct the first regular

n-gon on the hyperboloid, we calculate x =
√

cot2 π
n
cot2 π

k
− 1, then place the first

vertex at the point v0 = (x,
√
x2 + 1, 0). The remaining vertex locations are found by

rotating v0 around the hyperboloid in increments of 2π
n
.

10



3.4 Latent Vector Generation

The tiling system presented in Section 3.3 provides a convenient approach to gener-

ating new samples - each tile corresponds to one latent space vector, each of which

is used by the generative model to generate a sample. The latent space vectors are

sampled using Gaussian process (GP) regression. The posterior covariance between

nearby previously-generated vectors and to-be-generated vectors is calculated based

on the geodesic distance between the corresponding tiles in the hyperbolic world.

Lastly, latent space vectors are drawn from a multivariate Gaussian distribution us-

ing the posterior covariance. As users explore the hyperbolic world, new samples are

generated on nearby tiles that do not already have a sample.

We first define the kernel function k, which takes two sets of coordinates x, x′.

This is a squared exponential kernel with two hyperparameters - the signal variance

σ2 and the lengthscale ℓ.

k(x, x′) = σ2 exp

(
−dist(x, x′)2

ℓ

)
= σ2 exp

(
−cosh−1(−p(x, x′))2

ℓ

)
(3.15)

Then, given two sets of tile coordinates a and b, we can compute the covariance matrix

K. Let Ki,j be the value in row i, column j of K. Let ai be the i-th coordinate in a

and let bj be the j-th coordinate in b. Then for each Ki,j, we calculate Ki,j = k(ai, bj).

We then compute three covariance matrices. Let x0 be the training points - the

set of m coordinates of nearby tiles that already have a corresponding latent space

vector. Let x1 be the testing points - set of n coordinates of new tiles for which we

will generate latent space vectors.

• The training kernel matrix K0 uses x0, x0 as inputs and has dimension m×m.

• The training-testing kernel matrix K1 uses x0, x1 and has dimension m× n.

• The testing kernel matrix K2 uses x1, x1 and has dimension n× n.

11



From these matrices we compute the posterior covariance:

Σ = K2 −K⊤
1 K

−1
0 K1 (3.16)

Let the dimensionality of the latent space be d. Let x be the set of latent space

vectors corresponding to the tile coordinates in a. For each dimension i in the latent

space, slice x by taking si = [x0[i], x1[i], ..., xm[i]]
⊤, then compute the posterior mean:

µi = K⊤
1 K

−1
0 si (3.17)

Then sample a vector vi of size n from the multivariate normal distribution Nn(µi,Σ).

Finally, after repeating this process for every dimension i, we obtain d vectors of

size n. We collect these vectors into a matrix with dimension n×d, which gives n new

latent vectors, each of size d. These latent vectors are used to generate the images

corresponding to the n tiles whose coordinates are contained in b.

The hyperparameters to the Gaussian process σ2 and ℓ affect how similar the

generated images are. These are set by the user and can be altered at any time while

interacting with our system.

3.5 Generative Models

There is a wide variety of generative models to choose from. Recently, diffusion

models such as DALL-E 2 and Imagen [12, 14] have shown impressive performance

on text-to-image generation [11]. However, recent GAN models such as StyleGAN-T

achieve better, more continuous latent space interpolations than diffusion models [15].

The code for StyleGAN-T is not publicly available at the time of writing, so

we instead use LAFITE, an older GAN model with fast generating speed and good

performance on text-to-image generation [20].
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Chapter 4

Implementation

The hyperbolic world is implemented using the Unity game engine and the C# pro-

gramming language, and is deployed online using Unity WebGL. Latent vector and

image generation is handled with Python and Flask servers and deployed using Google

Cloud services.

Figure 4.1: A screenshot of images displayed in the hyperbolic world.
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4.1 Transformations

We first introduce two 3×3 transformations to be used in the implementation. These

transformations use the translations Lx, Lz defined in equations 3.7 and 3.8.

Txz(x0, z0) = Lx(sinh
−1(x0))Lz

(
sinh−1

(
z0

cosh(sinh−1(x0))

))
(4.1)

Rxz(x0, z0) = Lz

(
− sinh−1

(
z0

cosh(sinh−1(x0))

))
Lx(− sinh−1(x0)) (4.2)

The transformation Txz satisfies the property that, given a point v = (x0, y0, z0) on

the hyperboloid:

Txz(x0, z0)


0

1

0

 =


x0

y0

z0

 = v

The transformation Rxz performs the reverse transformation of Txz and satisfies the

following property:

Rxz(x0, z0)v = Rxz(x0, z0)


x0

y0

z0

 =


0

1

0


Txz and Rxz provide convenient ways to transform points on the hyperboloid to and

from (0, 1, 0). As both of these transformations are essentially just composites of x

and z translations, we can apply either of them to every point in the hyperbolic world

simultaneously, while preserving all key properties such as distance between points,

straight lines, angles, and so on. These transformations are used in Section 4.2.4 and

Section 4.3.
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4.2 Tiling System

The tiling system consists of three main types of objects: tiles, vertices, and edges.

Each tile contains a list of its n vertices and n edges, both in counter-clockwise order.

Each vertex contains a list of up to k incident edges in counter-clockwise order. Each

edge contains references to the two vertices incident to it and references for up to two

tiles that contain the edge.

4.2.1 Vertex and Edge Creation

We first define the vertex and edge creation process. An edge is created using two

vertices; the edge holds references to the two vertices, and the edge is added to each

of the two vertices’ lists of edges.

Upon creation, a vertex may either be initialized or uninitialized. If uninitialized,

its position is not defined, and its list of edges may contain fewer than k edges. In

order to initialize a vertex, it is given a position, and edges are created to fill its list

to size k; each of these new edges contains the given vertex and a new uninitialized

vertex. Although these new edges and uninitialized vertices have no defined location,

their order in the list still defines their order (i.e. counter-clockwise from each other)

in the hyperbolic world.

4.2.2 Tile Creation

On initialization of the system, the center of the first tile is placed at (0, 1, 0). The

locations of the vertices of this tile are calculated using the method described in

Section 3.3.1 (Tile Sizes) - the location of the first vertex is calculated based on n and

k, then the remaining vertex locations are found by rotating the first location around

the hyperboloid. The full creation process for the first tile and its corresponding

vertices and edges is described in Algorithm 1.
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Algorithm 1 Vertex creation for the first tile

1: Input n ▷ n is the number of number of vertices per tile
2: Input k ▷ k is the number of tiles per vertex
3: procedure CreateTile(n, k)
4: Define t: the new tile
5: t.center := (0, 1, 0)

6: x :=
√
cot2 π

n
cot2 π

k
− 1 ▷ Eq. 3.14

7: v := new vertex((x,
√
x2 + 1, 0))

8: t.vertices.add(v)
9: e := t.vertices[0].edges[0]
10: e.tiles.add(t); t.edges.add(e)
11: for 1 ≤ i < n do
12: v := e.vertex1 if v ̸= e.vertex1 else e.vertex2 ▷ Get uninitialized vertex
13: v.initialize() ▷ Initialize; create up to k edges and create vertices
14: v.position = new vertex(R(2π

n
) t.vertices[i− 1].position) ▷ Eq. 3.9

15: t.vertices.add(v)
16: e := v.prevEdge(e) ▷ v’s previous edge in CCW order
17: e.tiles.add(t); t.edges.add(e)
18: end for
19: t.vertices[0].edges(1) := e ▷ Merge edges
20: e.uninitializedVertex := t.vertices[0] ▷ Set e’s uninitialized vertex
21: return t
22: end procedure

After creating the first tile, each subsequent new tile is created using a currently-

existing reference tile and reference edge; the new tile contains the reference edge and

is a neighbor to the reference tile. In order to create this tile, we must first discover

all existing edges and vertices, then create new edges and vertices in addition to the

pre-existing ones. The full procedure is described in Algorithm 2.

On line 10 of Algorithm 2 we use a function getVerts that returns an edge’s

vertices in counter-clockwise order relative to an input tile. This function simply

cycles through the tile’s vertices to find the two edge vertices, then returns those two

vertices in the correct order. Although inefficient, this provides a location-agnostic

method for getting the vertices in the correct order, which can handle situations where

the location of the edge is too far away from the origin to be reliably accurate. An

alternative method that returns the vertices in CCW order relative to a given location
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Algorithm 2 Vertex creation from an existing tile

1: Input ref tile, ref edge ▷ Updated reference tile and edge
2: Input n, k
3: procedure CreateFromExisting(ref tile, ref edge, n, k)
4: Define t: the new tile
5: ref edge.tiles.add(t); t.edges.add(ref edge)
6: v := ref tile.center
7: u := mid(ref edge.vertex1, ref edge.vertex2) ▷ Eq. 3.12

8: w := dir(u, v) = norm(v − u · p(u,v)
q(u)

) ▷ Eq. 3.11

9: t.center := g(v, w, 2 · dist(v, u)) ▷ Eq. 3.10
10: vs = ref edge.getVerts(ref tile) ▷ gets vertices in CCW order relative to tile
11: v0 := vs[0]
12: v1 := vs[1]
13: t.vertices.add(v0)
14: e1 := v1.nextEdge(ref edge) ▷ v1’s next edge in CCW order
15: while v0 ̸= v0 and e has uninitialized vertex do ▷ Find existing vertices
16: t.vertices.addFront(v1)
17: v1 := e1.vertex1 if v1 ̸= e1.vertex1 else e1.vertex2
18: e1.tiles.add(t); t.edges.add(e1)
19: e1 := v1.nextEdge(ref edge)
20: end while
21: if v1 != v0 then ▷ Didn’t fully loop around; need to complete vertices
22: t.vertices.addFront(v1)
23: e2 := v0.prevEdge(e2)
24: e2.tiles.add(t); t.edges.add(e2)
25: d1 := dir(t.center, vs[1].position)
26: d2 := dir(t.center, vs[0].position)
27: d3 := dir(d1, d2) ▷ Direction used to construct new vertex locations

28: x :=
√

cot2 π
n
cot2 π

k
− 1

29: for 2 ≤ i < n−t.vertices.size+2 do
30: d4 := d1 · cos(i · 2π

n
) + d3 · sin(i · 2π

n
)

31: v0 := e2.vertex1 if v0 ̸= e2.vertex1 else e2.vertex2
32: v0.initialize() if !v0.initialized
33: v0.position := g(t.center, d4, cosh−1

√
x2 + 1)

34: t.vertices.add(v0)
35: e2 = v0.prevEdge(e2)
36: e2.tiles.add(t); t.edges.add(e2)
37: end for
38: merge(e1, e2) ▷ Similar to merging process in CreateTile(())
39: end if
40: return t
41: end procedure
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on the hyperboloid is shown in Algorithm 3.

Algorithm 3 Location-based method for returning two vertices in CCW order

1: Input vertex1, vertex2 ▷ The two vertices
2: Input l ▷ l is the relative location for the vertices
3: procedure getVerts(vertex1, vertex2, l)
4: v1 := proj(vertex1.position) - proj(l.position) ▷ Projection from Sec. 3.1.2
5: v2 := proj(vertex2.position) - proj(l.position)
6: a1 := atan2(v1.z, v1.x)
7: a2 := atan2(v2.z, v2.x)
8: a3 := (a2 - a1 + 2π) % (2π)
9: if a3 > π then
10: return {vertex2, vertex1}
11: else
12: return {vertex1, vertex2}
13: end if
14: end procedure

4.2.3 Setting Vertex Locations

Given a tile with its location and its corresponding vertex positions that are all

known to be accurate, Algorithm 4 defines the process for determining and setting

the location and the vertex positions of an existing adjacent tile, i.e. a tile that shares

an edge with the given one. This is similar to part of Algorithm 2 - we first update

the center, then wrap around the to-be-updated vertices and set their locations using

a calculated direction vector.

There are two alternate methods for setting vertex locations. Both of these rely

on the locations of all of the reference tile’s vertices. The first method wraps CCW

around the to-be-updated tile and simultaneously wraps CCW around the reference

tile; updated vertex locations are calculated by drawing geodesic lines from vertices

on the reference tile through the midpoint of the reference edge. The second method

wraps CCW around the to-be-updated tile and clockwise around the reference tile; up-

dated vertex locations are essentially calculated by reflecting across the edge. Specif-

ically, given a reference vertex v and u = norm(ref tile.center - updated center), the
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Algorithm 4 Setting adjacent tile positions

1: Input ref tile, ref edge ▷ Updated reference tile and edge
2: procedure SetVertexLocs(ref tile, ref edge)
3: Define t: the current tile
4: v := ref tile.center
5: u := mid(ref edge.vertex1, ref edge.vertex2)

6: w := dir(u, v) = norm(v − u · p(u,v)
q(u)

)

7: t.center := g(v, w, 2 · dist(v, u))
8: v0, v1 := ref edge.getVerts(ref tile)
9: e := v0.prevEdge(ref edge)
10: d1 := dir(t.center, v1.position)
11: d2 := dir(t.center, v0.position)
12: d3 := dir(d1, d2)

13: x :=
√
cot2 π

n
cot2 π

k
− 1

14: for 2 ≤ i < n do
15: d4 := d1 · cos(i · 2π

n
) + d3 · sin(i · 2π

n
)

16: v0 := e.vertex1 if v0 ̸= e.vertex1 else e.vertex2
17: v0.position := g(t.center, d4, cosh−1

√
x2 + 1)

18: e = v0.prevEdge(e)
19: end for
20: end procedure

corresponding location is calculated as v − 2p(v, u) · u.

We do not use either of these two methods in our system. This is because they

are empirically less accurate than the one in Algorithm 4, as they rely on all of the

reference tile’s vertex locations and perform calculations across larger distances.

4.2.4 Updating and Expansion

At any given moment, the user will be standing on a tile, which we will refer to as

the current tile. As the user moves around (Section 4.3), at every frame the current

tile’s position must be updated along with its vertex locations. Additionally, during

movement, the rotation of the world constantly changes as a byproduct of the space

being hyperbolic. As a result, we must keep track of an angle θ, which is used to

rotate the vertex locations.

The algorithm for updating the current tile is described in Algorithm 5. We set
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the tile’s position by transforming (0, 1, 0) using an up-to-date position vector. We

initialize the first vertex’s position using the method described in Section 3.3.1 (Tile

Sizes), then rotate it around the hyperboloid to get the positions of all other vertices.

Finally, we transform all vertices using the same transform that was applied to the

tile center.

Algorithm 5 Updating current tile and vertex locations

1: Input t ▷ t is the current tile
2: Input p ▷ p is the updated position of the tile’s center
3: Input θ ▷ θ is the updated angle of the tile
4: procedure UpdateCurrentTile(t, p, θ)
5: t.center := Txz(p.x, p.z) (0, 1, 0)
6: v1, v2, ..., vn ← locations of the vertices of t

7: x :=
√

cot2 π
n
cot2 π

k
− 1

8: v1 := R(θ) (x,
√
x2 + 1, 0)⊤

9: for 2 ≤ i ≤ n do
10: vi := R(2π

n
) vi−1

11: end for
12: for 1 ≤ i ≤ n do
13: vi := Txz(p.x, p.z) vi
14: end for
15: end procedure

After updating the current tile, we expand to neighboring tiles, updating or cre-

ating tiles along the way. We perform a breadth-first search (BFS) starting at the

current tile and expanding outwards. The BFS stops upon reaching tiles that are

further away on the hyperboloid from (0, 1, 0) than a given distance - this distance

may be changed by the user to fit performance or visualization needs.

Every tile that the BFS reaches has its location and its vertex locations updated

using Algorithm 4. These tiles are then rendered into the hyperbolic world; any tile

not reached by the BFS is not updated, and is thus not rendered.

The expansion process is detailed in Algorithm 6.
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Algorithm 6 Expanding outwards

1: Input t ▷ t is the updated current tile
2: Input r ▷ r is the maximum distance to expand to
3: procedure Expand(t, r)
4: queue := {t}
5: while !queue.isEmpty() do
6: t1 := queue.pop()
7: if dist((0, 1, 0), t1) > r then continue
8: end if
9: for edge e ∈ t1.edges do
10: if e.numTiles == 2 then ▷ Case: t1 has a neighbor t2 via e
11: t2 := e.tile1 if t1 ̸= e.tile1 else e.tile2
12: else ▷ Case: need to create a new tile t2
13: t2 := CreateFromExisting(t1, e)
14: end if
15: if !t2.isUpdated then ▷ Update and add t2 to queue if needed
16: t2.isUpdated = True
17: SetVertexLocs(t2, e)
18: queue.add(t2)
19: end if
20: end for
21: end while
22: end procedure
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4.2.5 Mitigating Inaccuracy

Updating all tile and vertex locations as previously described leads to inaccuracies

that quickly compound when expanding positions far away from (0, 1, 0) on the hy-

perboloid. This causes problems at moderate render distances, even when using

double-precision numbers. To solve this issue, every time we calculate a new position

for a tile or a vertex, we normalize it to the hyperboloid (Eq 3.5). Doing so allows

calculations to remain accurate even at extreme distances on the hyperboloid.

4.3 Movement

When in the hyperbolic world, users may move forward, backward, left, and/or right

via keyboard input, and can look around via mouse input. At all times, the system

tracks the user’s position u and the direction ϕ ∈ [−π, π] that the user is facing. The

system also tracks the tile that the user is standing on. On initialization, the user is

positioned at (0, 1, 0) on the hyperboloid.

We define a constant m to be the movement speed. During any frame, if the

user is pressing the input to go forward, their position is moved from u to g(u, d,m)

(Eq 3.10), where d = (cosϕ, 0, sinϕ) is the direction vector that is defined by ϕ and

is tangent to the hyperboloid at (0, 1, 0). Likewise, if the user is moving backward,

their position is moved from u to g(u, d,−m). If the user is moving right, their new

position is g(u, r,m)), where r = (cos(ϕ − π
2
), 0, sin(ϕ − π

2
)) is the direction to the

right of where the user is facing. If the user is moving left, their new position is

g(u, r,−m).

At every frame, the system checks to see if the user has moved away from (0, 1, 0).

If so, we apply the transform Rxz(ux, uz) to the entire world, which moves the user

back to (0, 1, 0) and moves all tiles accordingly. We calculate the new position of the

current tile by applying Rxz(ux, uz) to its current position. We additionally update
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the tile angle θ as follows:

1. Select the first vertex in the current tile’s list of vertices.

2. Apply Rxz(ux, uz) to the location of this vertex. Let the result be v.

3. Calculate v = Rxz(px, pz)v, where p is the newly-calculated position of the

current tile.

4. Set θ = atan2(vz, vx).

This allows the updating algorithm to correctly set the current tile’s vertex locations.

If we do not set the angle during movement then the user’s direction will constant

changing during movement, even without mouse input.

Finally, if there exists a tile that is closer to the user than the current tile, we set

that tile to be the new current tile. We update the new tile’s angle as follows:

1. Select the first vertex in the new current tile’s list of vertices.

2. Calculate v = Rxz(px, pz), where p is the position of the current tile.

3. Set θ = atan2(vz, vx).

4.3.1 Accounting for Frame Rate

Different systems may have different performance when running the system. Since

user position updates are done every frame, users with lower frame rates will move

slower through the world than users with higher frame rates under the currently

defined constant m movement speed. To account for this, we divide m by the frame

rate, which we calculate by keeping track of the time elapsed between frames1.

1There is no built-in way to track frame rate in the Unity game engine.
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4.4 Tile Grouping

Let two tiles t1, t2 be adjacent if they share either an edge or a vertex. We determine

if t1, t2 are adjacent by measuring the distances between their centers. Using the

equation for determining tile size (3.14), let x =
√

cot2 π
n
cot2 π

k
− 1. Then t1 and t2

are adjacent if the distance between the two tile centers is less than 2·cosh−1
√
x2 + 1+

ϵ for some small value2 of ϵ such as ϵ = 10−6. Intuitively, the value cosh−1
√
x2 + 1

measures the distance from a tile’s center to any of its vertices.

Whenever the user enters a tile that doesn’t already have an associated latent

vector, that tile and all adjacent tiles that also have no associated image are grouped

together. Their locations on the hyperboloid are batched into a set of testing points

for Gaussian process regression. The positions of all currently-updated tiles that do

have an associated latent vector are used as training points, with the latent vectors

used as labels. The testing points, training points, and labels are all sent in an HTTP

request to a Flask server; newly-generated latent vectors and images are then sent

back.

Our system additionally allows users to group together all nearby vector-less tiles

with a button press, even if the current tile already has a vector. The current tile is

not included in the grouping in this case.

4.5 Model Deployment

As mentioned in Section 3.5, we use the LAFITE model [20] to generate images.

This model is housed by a Flask server; the model and server are built into a Docker

container, which is then uploaded to Google Vertex AI [7], which exposes an endpoint

that can receive HTTP requests.

A Unity client can then send data to this endpoint; the data consists of tile

2The purpose of ϵ is to deal with potential floating-point inaccuracies.
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coordinates and latent vectors, which are formulated in a JSON object as training

points, labels, and testing points as described in Section 4.4. The server receives the

data and performs GP regression to generate latent vectors for the testing points,

then generates the corresponding images using the LAFITE model. The images are

binary-encoded to the Base64 format and are sent along with the latent vectors to

the Unity client via HTTP response - the client decodes and renders the images and

stores the new latent vectors to be used as future training labels. Figure 4.2 provides

a high-level overview of this workflow.

Figure 4.2: High-level overview of a typical HTTP workflow.

Note that sending a request to this endpoint requires a Google Cloud service

account with an associated private key. In order to prevent Unity users from having

direct access to this key, we use an additional Flask server that serves as a midpoint

between the Unity client and the Vertex AI model server. This midpoint server

forwards data to and from the Unity client and the model server; it uses the private

key and the Vertex AI Python API to query the endpoint. This server is deployed to

Google App Engine [6].
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Chapter 5

Evaluation

A practical use for our project is for searching through a latent space in order to

generate various types of high-quality content such as images or 3D models. We

evaluate our system by performing multiple simulated experiments where we attempt

to find a target latent vector and/or image in the latent space by moving through the

hyperbolic world; we compare the similarities between target outputs and ultimately-

generated outputs. These experiments simulate human-in-the-loop exploration and

optimization of models in the hyperbolic world.

The first set of experiments involves randomly generating a target vector and ini-

tializing the world with random latent vectors - we experiment with various different

latent space dimensionalities to assess the effectiveness of our system at both low

and high dimensions. The second set of experiments utilizes the LAFITE model’s

text-to-image capabilities to initialize the world with vectors/images that are already

close to a the target. Finally, we experiment with increasing n and/or k in the tiling

system to determine the effectiveness of the use of hyperbolic space in our system.
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5.1 Random Targets and Initialization

In the first experiment, we generate a target image using a randomly-generated 512-

dimensional unit vector, then use the hyperbolic world with (n, k) = (4, 5) to attempt

to find the closest image to the target. Specifically, for multiple iterations we (1)

generate images for all adjacent tiles that do not already have an associated image,

then (2) move to the tile with the closest associated latent vector to the target vector

in terms of cosine distance (Equation 5.1). When comparing cosine distances, we only

use vectors generated in the current iteration. We use cosine distance as a similarity

metric rather than, say, Euclidean distance because Euclidean distance and other

p-norms tends to lose meaning at higher dimensionalities [10].

DC(u, v) = 1− u · v
∥u∥∥v∥

= 1−
∑512

i=1 uivi√∑512
i=1 u

2
i

√∑512
i=1 v

2
i

(5.1)

Latent vectors are initialized randomly in the first iteration. The coordinates of the

origin tile and all adjacent tiles are used to create a kernel matrix K using the method

described in Section 3.4 (Latent Vector Generation). The Cholesky decomposition of

this matrix is multiplied by a t × d matrix with values drawn from N (0, 1), where t

is the number of coordinates and d is the latent space dimension. Each row of the

result is normalized to the d-sphere before being used as a latent vector because the

LAFITE model requires normalized input vectors.

Across several initial experiments with a static signal variance of σ2 = 0.0022, we

find that the cosine distance quickly decreases within the first few iterations, but then

plateaus at around DC = 0.7. With a static signal variance of σ2 = 0.0012, the cosine

distance decreases at a slower rate and plateaus much later at around DC = 0.45

after many iterations (Figure 5.1).

Therefore, during the experiment, whenever the cosine distance between the target

vector and the closest recently-generated latent vector increases for three consecutive
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Figure 5.1: Cosine distances between target vector and closest generated vector for
different σ2 values.

iterations, we reduce the signal variance by setting σ = σ/
√
2. This method simu-

lates the user balancing the exploration-exploitation tradeoff during the optimization

process in a similar fashion to Zhou et al [19]. The process begins with a higher σ

in order to explore more, then the user may decrease σ as they get closer to their

target output. The signal variance for the GP in this experiment is initialized to

σ2 = 0.0022, and the lengthscale is set to ℓ = 2.0; these values work well for the

512-dimensional latent space based on multiple trial runs.

Figure 5.2 shows a sample target image, as well as the final output after 500

generative iterations in the hyperbolic world. These two images are visually similar

and share multiple visual features. Figure 5.3 shows every tenth image generated over

the first 200 iterations, allowing us to visualise how the intermediate images gradually

become more similar to the target image.
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(a) Target image (b) Final generated image

Figure 5.2: Comparison of target image and the closest generated output.

Figure 5.3: Images generated over the first 200 iterations.
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In addition to recording the cosine distances for the 512-dimensional latent vectors

used by LAFITE, we perform the same experiment and record the distances using la-

tent vectors that have 256, 128, 64, and 32 dimensions. These distances are visualised

in Figure 5.4 for each dimension listed. Note that when using 32-dimensional latent

vectors, we instead initialize the signal variance to be σ2 = 0.0052, which allows the

cosine distance to converge more quickly than when using σ2 = 0.0022. Increasing the

initial signal variance did not make a significant difference on larger dimensionalities.

Figure 5.4 illustrates a weakness in our system. Bayesian optimization is known

to not scale well to high-dimensional spaces, i.e. spaces with greater than 10 or 20

dimensions, due to the exponentially-increasing amount of space that needs to be

covered [17, 3, 18]. While our system quickly converges to the target vector in a

32-dimensional latent space, it requires hundreds of iterations to attain good results

at much higher dimensions such as 512.

Figure 5.4: Cosine distances between target vector and closest generated vector for
different dimensionalities.
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5.2 Focused Initialization

The LAFITE model is capable of generating latent vector embeddings for input sen-

tences. This allows users of our system to initialize the first image to be much closer

to their target vector than if it were initialized randomly. Therefore, we perform an-

other experiment to analyze the effectiveness of our system in this scenario. We first

generate a vector embedding for the sentence ”A crowd watching baseball players at

a game.” To create a target, we add a noise vector n drawn from the distribution

n ∼ N512(0, 0.05) to the embedding, then normalize the output to the 512-sphere.

This simulates a scenario where a user imagines an image, then starts the exploration

process with a fairly similar image by inputting a descriptive sentence. The imagined

image uses the vector embedding with added noise, while the starting image uses the

vector embedding alone.

We ran this experiment with multiple values of σ; the cosine distances for each

σ value are plotted in Figure 5.5. We see that the initial value for σ can make a

significant difference at early iterations, although after many iterations the difference

is mostly mitigated. Additionally, we are ultimately able to get significantly closer to

the target output in terms of cosine distance (DC ≈ 0.15) than when using random

initialization (DC ≈ 0.25).

The initial image generated from the sentence, the target image, and the final

generated image from the run with σ = 0.001 are shown in Figure 5.6. The base

image for the sentence “A crowd watching baseball players at a game” is visually

somewhat similar to the noisily-generated target image; the target image and the

final output are visually very similar and share many visual features, such as the

layout of the grass and dirt, as well as the positions and shapes of the people on the

dirt and in the background.
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Figure 5.5: Cosine distances when using targeted initialization.

(a) Initial image (b) Target image (c) Final generated image

Figure 5.6: Initial image, target image, and the closest generated output.
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5.3 Increasing n and k

To make full use of the hyperbolic world and the tiling system, a user may use

different values for n and k. We perform the same simulated experiment as Section

5.1 (Random Targets and Initialization), but rather than using (n, k) = (4, 5), we

instead use (4, 6), (4, 7), (5, 5), (6, 5), (6, 7). Each of these pairs represents an increase

in n and/or an increase in k from the (4, 5) pair that was used previously. We use an

initial signal variance of σ = 0.002 and increase the lengthscale as n and k increase,

based on the formula for tile size in Equation 3.14.

The recorded cosine distances are shown in 5.7. We see that as we increase n

and/or k, the cosine distance decreases more quickly at earlier iterations and even-

tually converges to lower values after many iterations. This makes intuitive sense, as

with an increased (n, k) we can generate more samples at a time and explore more of

the hyperbolic world at each iteration.

Figure 5.7: Cosine distances for various (n, k), and ℓ values.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This work introduces an application for exploring generative models in hyperbolic

space. We define a set of geometric functions and a tiling system for the hyperboloid

model of hyperbolic geometry. We implement the hyperbolic world in the Unity game

engine and link the hyperbolic world with a Flask server that uses GP regression to

produce output images from the LAFITE generative model. Finally, through multiple

simulated experiments, we find that our system can reliably, albeit slowly, find target

outputs through exploration of the hyperbolic world.

There are currently few resources available that detail the steps necessary to sim-

ulating hyperbolic space. This report and the associated code serves as a simple,

working example of a simulation of hyperbolic space, and may be used as a start-

ing point for those interested in modeling hyperbolic space and exploring ways to

optimize generative models within hyperbolic space.
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6.2 Limitations and Future Work

The biggest limitation of our system is its poor scalability to high dimensions, al-

though increasing the number of vertices per tile and/or increasing the number of

tiles per vertex can help mitigate this issue. A potential path of future work is to

utilize a method to reduce the dimensionality of a high-dimensional latent space in

order to allow users to converge more quickly to target outputs; for instance, the work

done by Zhou et al. involves training a VAE to reduce the latent space of a music

VAE from 512 to 4 dimensions [19].

Additionally, we only performed simulated experiments, which do not necessarily

translate to practice. In a simulated experiment our system always chooses the op-

timal action towards a stationary target; real users’ judgment of output quality may

be unclear or even change during exploration.

In the Unity implementation of the hyperbolic world, vertices are projected to

the correct locations on the Poincaré disk; however, edges remain straight in this

projection when they should be curved. This is a result of only specifying projected

vertex locations; future work could add curvature to the edges.

As part of this project, we have implemented several image generation models,

with LAFITE being the currently-deployed model. Future work could add more

models that generate various high-quality content beyond images, such as 3D models

or melodies, and additionally deploy more than one model at a time for users to

choose from.
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Appendix A

Proofs

A.1 Derivation for Valid (n, k) Hyperbolic Tilings

Given k regular n-gons meeting at one point, the sum of the interior angles of each

n-gon vertex meeting at that point is k · n−2
n
π. If this quantity is equal to 2π then

(n, k) defines a tiling in Euclidean space; if it is less than 2π then it is a spherical

tiling; if it is greater than 2π then it is a hyperbolic tiling.

k · n− 2

n
π > 2π

n− 2

n
>

2

k

1− 2

n
>

2

k

1 >
2

n
+

2

k

nk > 2(n+ k)

nk − 2n− 2k > 0

nk − 2n− 2k + 4 > 4

(n− 2)(k − 2) > 4 (A.1)
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A.2 Derivation for Tile Size Given (n, k)

Let θ = 2π
n
. By rotating this vertex counterclockwise around the hyperboloid by θ

and −θ, we obtain v1 = (x cos θ,
√
x2 + 1, x sin θ) and v2 = (x cos θ,

√
x2 + 1,−x sin θ),

the two vertices adjacent to v0. As described in Section 3.2, the angle between the

line containing v0, v1 and the line containing v0, v2 at the intersection point v0 is

given by cos−1(w1, w2), where w1, w2 are the tangent vectors to the two lines at v0.

Additionally, since there are k n-gons meeting at v0, this angle must be equal to

ϕ = 2π
k
.

We first calculate w1 and w2.

w1 = norm

(
v1 − v0 ·

p(v0, v1)

q(v1)

)
= norm((x+ x3)(cos θ − 1),

√
x2 + 1(x2(cos θ − 1)), x sin θ)

=
((x+ x3)(cos θ − 1),

√
x2 + 1(x2(cos θ − 1)), x sin θ)√

q
(
((x+ x3)(cos θ − 1),

√
x2 + 1(x2(cos θ − 1)), x sin θ)

)
=

((x+ x3)(cos θ − 1),
√
x2 + 1(x2(cos θ − 1)), x sin θ)√

−(x2 + 1)x4(cos θ − 1)2 + (x+ x3)2(cos θ − 1)2 + x2 sin2 θ

=
((x+ x3)(cos θ − 1),

√
x2 + 1(x2(cos θ − 1)), x sin θ)√

(x4 + x2)(cos θ − 1)2 + x2 sin2 θ

=
((1 + x2)(cos θ − 1),

√
x2 + 1(x(cos θ − 1)), sin θ)√

(x2 + 1)(cos θ − 1)2 + sin2 θ

Applying the same process for w2, we get

w2 =
((1 + x2)(cos θ − 1),

√
x2 + 1(x(cos θ − 1)),− sin θ)√

(x2 + 1)(cos θ − 1)2 + sin2 θ
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Calculating the angle between w1 and w2:

cosϕ = p(w1, w2)

=
−(x2 + 1)x2(cos θ − 1)2 + (x2 + 1)2(cos θ − 1)2 − sin2 θ

(x2 + 1)(cos θ − 1)2 + sin2 θ

=
(x2 + 1)(cos θ − 1)2 − sin2 θ

(x2 + 1)(cos θ − 1)2 + sin2 θ

Finally, solving for x:

cosϕ((x2 + 1)(cos θ − 1)2 + sin2 θ) = (x2 + 1)(cos θ − 1)2 − sin2 θ

x2
(
(cosϕ− 1)(cos θ − 1)2

)
= −(cosϕ− 1)(cos θ − 1)2 − cosϕ sin2 θ − sin2 θ

x2 =
−(cosϕ− 1)(cos θ − 1)2 − cosϕ sin2 θ − sin2 θ

(cosϕ− 1)(cos θ − 1)2

= − − cosϕ sin2 θ − sin2 θ

(cosϕ− 1)(cos θ − 1)2
− 1

=
sin2 θ(cosϕ+ 1)

(1− cosϕ)(cos θ − 1)2
− 1

=
sin2 θ

(cos θ − 1)2
1 + cosϕ

1− cosϕ
− 1

= cot2
θ

2
cot2

ϕ

2
− 1

x =

√
cot2

π

n
cot2

π

k
− 1 (A.2)
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