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Abstract

Visual dialog is an important task that lies at the
intersection of natural language processing and
computer vision. It has far-reaching implica-
tions in the real world, so it is important to un-
derstand what information VD models depend
on. In this paper, we explore one model for
visual dialog called Question-Category-Spatial
with a Region under Discussion. In addition
to reproducing the results of the original work,
we introduce our own ablations on the input
embedding in order to understand what infor-
mation is most useful for the model. Finally,
we contribute a more efficient input embedding
for the posed questions.

1 Introduction

Visual dialog (VD) is a joint task between natu-
ral language processing and computer vision that
involves a machine engaging in dialog about a vi-
sual input. This task has many applications both
in real-world deployment and within research. In
applications used by the general public, it can
help visually-impaired people approach visual chal-
lenges by answering questions about their surround-
ings. More generally, VD can form the base for
smart assistants that answer questions with visual
inputs. In research, VD can be used to evaluate
whether or not a model really understands a visual
input. Given the multitude of potential applications
of VD, it is worth investigating what information
VD models depend on as doing so can help improve
the reliability of the system.

In this paper, we reproduce the Question-
Category-Spatial (QCS) model with a Region under
Discussion (RuD), a model that performs VD. In
addition to performing the feature ablations from
the original work, we introduce our own ablations
on the input embedding to understand the effect of
each component of the embedding on the model’s
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performance. Furthermore, we experiment with dif-
ferent ways of producing the question embedding
and find that using a GRU is less computationally
expensive than the originally-used LSTM while
yielding a similar performance.

2 Related Work
2.1 Visual Dialog

Visual dialog is a conversation comprised of a se-
ries of questions and answers that form a dialog his-
tory (i.e., each question and answer could depend
on the past questions and answers in the conversa-
tion) (Das et al., 2017). The popular task of Visual
Question Answering is essentially one iteration of
VD.

2.2 QCS Model

The QCS model takes an input embedding com-
posed of the target category of the object of interest,
an LSTM embedding of the posed question, and
spatial information about the object with respect to
the entire image. The embedding is fed into a Mul-
tilayer Perceptron (MLP), and the model outputs
an answer (Yes, No, or N/A).

The target category is encoded as a dense cat-
egory embedding that is obtained from a one-hot
class vector (Fig. 1). The embedding of the ques-
tion is generated by an LSTM. The spatial informa-
tion of the object (annotated as part of the COCO
dataset (Lin et al., 2014)) with respect to the image
consists of eight coordinates (de Vries et al., 2017).
These three parts are concatenated together to form
the input embedding.

2.3 QCS +RuD

QCS+RuD model is identical to QCS except it
appends to the input embedding the spatial infor-
mation of the object with respect to a Region under
Discussion (RuD) (Fig. 2). The RuD uses dialog
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Figure 2: Schematic of the QCS+RuD model including
the input embedding.

history to narrow down the region of the image
that is relevant to the conversation. This addition is
meant to help improve the accuracy of the Oracle’s
answers.

2.4 Interpretability of Embeddings

Understanding what information a model depends
on is useful for diagnosing shortcomings in the
model and improving its reliability. Since the input
embedding to QCS+RuD is comprised of four dis-
tinct parts, we seek to determine the effect of each
part on the model.

There exist a few methods for examining embed-
dings. One such method is the word intrusion test
which can be applied to topic models to determine
if the topics that the model predicts are reason-
able (Chang et al., 2009). However, this method
involves several rounds where a human chooses
from a set of words from a model’s generated col-
lection of words under a topic. As a result, this
method is labor-intensive.

Another set of methods forms more interpretable

embeddings by projecting dense embeddings to
sparser embeddings with higher dimensions (Arora
et al., 2016; Templeton, 2021). However, these
methods do not improve upon the existing dense
embeddings.

2.5 GuessWhat?!

To evaluate the QCS model, de Vries et al. de-
veloped the GuessWhat?! dataset (de Vries et al.,
2017). The GuessWhat?! dataset consists of a
game where a “Questioner” asks an “Oracle” a se-
ries of questions in order to identify an object in
an image. The questioner and oracle are two tasks,
and the QCS model plays the role of the oracle. We
use this dataset to train and evaluate our models.

3 Reproducing QCS+RuD

We reproduce the baseline results from the original
QCS+RuD work (Mazuecos et al., 2021) as well
as their original ablations (Table 1). We obtained
similar results as the original paper for both the
baseline model and the ablations.

Mazuecos et al. perform three feature ablations
by alternately removing supercategory matching,
second-token matching, and negative history. Some
noun phrases (NPs) use supercategories. These are
nouns that cover several COCO categories. For
example, “food” covers “apple”, “orange”, ‘“cu-
cumber”, etc. These supercategories are used in
the semantic history for each game. The semantic
history is the list of positive and negative relations
to the supercategories from previous rounds of dia-
log (e.g. “vehicle” being positive and “car” being
negative means that the object is a vehicle but not a
car) (Mazuecos et al., 2021). Some category ques-
tions use two-token NPs (i.e. “red car”) in which
case only the second token refers to the category
(i.e. “car” in “red car”). The QCS+RuD model only
matches to the second token if the answer is “yes”.
Lastly, negative history removes all objects from
negated supercategories from the set of possible
objects to be included in the RuD.

4 Ablations on Input Embeddings

This section details our novel ablations on the
QCS+RuD model.

As the input embedding consists of several parts,
we alternately ablate these parts to examine the
effect of each on the model. We do not ablate
the question embedding as the task is to engage in
dialog by answering the questions.



Type QCS QCS+RuD -super -2nd -neg
object 0.908 0911  0.909 0.912 0.909
spatial 0.677  0.687  0.695 0.694 0.698
color 0.624 0.629  0.633 0.625 0.630
action 0.647 0.662  0.662 0.658 0.667
size.  0.633 0.628  0.629 0.637 0.620
texture 0.724 0.706  0.714 0.710 0.716
shape 0.668 0.698  0.688 0.678 0.678
GW 0.781 0.787 0.790 0.789 0.790

Table 1: Reproduced paper results. We obtain similar
results as the original paper.

We use the term “—image” to refer to ablating
the spatial information of the object with respect
to the image. Similarly, “~target” refers to ablating
the target category embedding, and “—~RuD” refers
to ablating the Region under Discussion. We do
not include an explicit ablation on the RuD alone
because that is the equivalent of the QCS model
itself.

The test set is divided into questions with and
without history information. We test each model
on the overall test set, as well as on the two subsets
of questions with and without history.

Without history, RuD is defined to be the whole
image, so the RuD spatial embedding is the same
as the spatial embedding for the entire image. So
—image without history is equivalent to QCS.

We train each model for 16 epochs, with a learn-
ing rate of 0.0001, and a batch size of 1024, using
an NVIDIA Tesla P100 with 16GB GPU memory.

4.1 Results

1. The RuD captures a significant amount of
image information.

The performance of QCS+RuD and —image are

similar. Furthermore, —target—RuD performs worse
than —target. These trends imply that the model can
eventually deduce the target object from the RuD
(Table 2). This suggests that the RuD alone still
captures enough information about the image for
the model to successfully engage in dialog.
2. Removing the target category is generally
more detrimental to the model’s performance
than removing the other parts of the input em-
bedding.

All models that include the target category in
the input embedding usually perform significantly
better than models that ablate the target category.

Compared to -image and QCS (which is equivalent
to -RuD), -target demonstrates a significant drop
on most types of questions, except size and spa-
tial. This trend seems reasonable because when
we remove the target category, the model does not
necessarily know what it is looking for until it ac-
cumulates enough dialog history.

3. Sometimes, the ablations remove too much
information.

Removing information can be detrimental to
performance. For example, -image—RuD, -target-
RuD, and —image—target perform much worse than
QCS+RuD.

4. Accessing the dialog history helps when the
model does not know the target category.

The reduction in performance from QCS+RuD
w/o history to —target w/o history is larger than that
from QCS+RuD w/ history to —target w/ history.
This observation suggests that removing history
negatively impacts the model that does not have
the target category. This trend is reasonable be-
cause if the model does not know what type of
object it is looking for, it needs some supporting
information. In other words, the model without the
target category benefits from accessing the dialog
history (Table 4).

5 Modifying the Question Embedding

Next, we perform a set of novel experiments in
which we evaluate different ways of embedding the
posed question.

Specifically, we alternately replace the original
LSTM model with a GRU (Paszke et al., 2019),
a transformer encoder (Paszke et al., 2019), and
a naive embedding. We then compare the perfor-
mance corresponding to each embedding. We im-
plement a GRU because GRUs have fewer parame-
ters and consequently take less time to train (Chung
et al., 2014). Next, we try a transformer since they
generally perform better than LSTMs in practice.
Finally, we try a naive method that simply averages
the word embeddings in a question to produce the
question embedding. Additionally, we considered
using a bag-of-words model; however, we decided
that the model would be too large given the vocab-
ulary size. We also tried using a pre-trained BERT
model but found that training was unreasonably
slow.

LSTM and GRU take word embeddings of size
300 and return vectors of size 512. The naive
method returns vectors of size 300.



Type QCS+RuD -image -target -image-RuD -image-target -target-RuD

object 0911  0.908 0.746 0.903 0.724 0.736
spatial  0.687  0.684 0.688 0.585 0.678 0.670
color 0.629  0.630 0.601 0.601 0.599 0.574
action  0.662  0.659 0.620 0.613 0.617 0.601
size 0.628  0.651 0.662 0.557 0.637 0.638
texture  0.706  0.733 0.634 0.713 0.625 0.617
shape 0.698  0.688 0.638 0.635 0.601 0.638
total 0.787  0.785 0.699 0.741 0.685 0.684

Table 2: Performance on all questions. The leftmost column indicates the question types. “total” is the general
performance across all types.

Type QCS+RuD -image -target -image-RuD -image-target -target-RuD

object  0.895  0.893 0.740 0.884 0.715 0.728
spatial  0.684  0.681 0.691 0.579 0.679 0.667
color 0.620  0.620 0.602 0.588 0.601 0.574
action  0.645 0.639 0.614 0.589 0.617 0.595
size 0.618  0.636 0.659 0.551 0.635 0.641
texture  0.701  0.721 0.641 0.701 0.626 0.620
shape 0.650  0.675 0.613 0.588 0.563 0.625
total 0.742  0.740 0.691 0.682 0.678 0.672

Table 3: Performance on questions with history.

Type QCS+RuD -image -target -image-RuD -image-target -target-RuD

object 0935  0.930 0.753 0.931 0.737 0.749
spatial  0.697  0.693 0.679 0.606 0.676 0.678
color 0.656  0.660 0.596 0.640 0.590 0.573
action  0.719  0.724 0.639 0.692 0.619 0.623
size 0.657  0.694 0.671 0.572 0.643 0.629
texture  0.714  0.751 0.623 0.731 0.623 0.612
shape 0.752  0.702 0.667 0.688 0.645 0.653
total 0.857 0.856 0.711 0.833 0.695 0.703

Table 4: Performance on questions without history.



Type QCS+RuD GRU Transformer Naive
object 0911 0911 0.744  0.815
spatial  0.687 0.696  0.596 0.607
color 0.629 0.626  0.554  0.580
action  0.662 0.663 0574  0.601
size 0.628 0.631  0.553 0.584
texture  0.706  0.717  0.593 0.613
shape 0.698 0.691 0.611 0.598
total 0.787 0.790 0.635 0.713

Table 5: Extended results (all questions).

LSTM GRU Transformer Naive
2100 950 2660 69

Table 6: Approximate times in seconds to complete
one training epoch for each question embedding model.
LSTM is the original baseline model.

We train all non-transformer models for 16
epochs, with a learning rate of 0.0001, and a batch
size of 1024 as we did for our ablations on the in-
put embeddings. As before, all models are trained
using an NVIDIA Tesla P100 with 16GB GPU
memory.

Due to insufficient GPU memory, we simplify
the transformer encoder model to have dimension
256, one head, and two layers. We also reduce
the batch size to 512. Lastly, we modify the word
embeddings to have size 256 to be compatible with
the transformer.

5.1 Results

We find that the GRU trains faster (Table 6) and
yields similar accuracy to the LSTM (Table 5). The
transformer encoder takes a long time to train de-
spite our simplifications and yields a worse accu-
racy than the LSTM. Finally, the naive implemen-
tation performs worse than the LSTM but performs
better than the transformer encoder. Thus, our re-
sults suggest that using a GRU may be more effi-
cient than using an LSTM.

6 Conclusion and Future Work

In this paper, we reproduce the QCS+RuD model
and feature ablations from “Region under Discus-
sion for visual dialog” (Mazuecos et al., 2021). We
then contribute novel ablations on the input embed-
dings. Lastly, we improve the question embedding
by replacing the LSTM with a GRU.

A potential improvement is to reduce the model’s
reliance on image annotations by developing a way
to leverage visual features detected by computer
vision models. The current spatial information re-
lies on human annotations from the COCO dataset
(Lin et al., 2014) to construct the RuD because
the QCS paper found that visual features worsened
the performance. However, as annotations are not
necessarily available for all datasets, concurrently
computing visual features would be useful.
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