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Motivation and Goal

Related Work
PDR2 (2015): Detect footsteps, estimate step length, and update 

location at every step. PDR fails with complex motion cases, such as 

walking sideways.

RIDI3 (2017): First machine learning method. Uses statistical learning to 

classify device placement, then regress velocities to obtain positions. 

RIDI only works for four specific device placements and is thus not 

robust to all use cases.

IONet4 (2018): Uses LSTM, an RNN architecture, to regress velocity 

and orientation. Outperforms previous methods but suffers from 

accumulated orientation drift on noisy data.

RoNIN1 (2019) introduced a 1D variant of ResNet, a CNN architecture, 

to regress velocities and obtain positions. RoNIN ResNet outperforms 

all previous methods – we use RoNIN ResNet as a baseline model to 

compare against other models.

RoNIN also introduced a comprehensive, diverse dataset of IMU data 

and ground truth positions, which we use to train and test different 

models.

Transformer Architecture
The baseline transformer model consists of 6 transformer encoders followed by an MLP 

layer. Each encoder contains a multi-head self-attention unit followed by a feedforward 

unit. Self-attention is a powerful method of encoding a representation of an input 

sequence. Given an input X, self-attention S is calculated simultaneously for every head i.

Convolutional Transformer
To improve on the baseline transformer, we introduce convolutional layers to help extract 

local information for the transformer. The most effective convolutional transformer model 

applies multiple convolutional layers to the input sequentially before the transformer.

An Inertial Measurement Unit (IMU) uses an accelerometer and a 

gyroscope to measure a body’s linear acceleration and angular velocity 

in 3 dimensions.

IMUs are cheap, energy-efficient, ubiquitous, and have many 

applications, such as navigation for robots and pedestrians, as well as 

augmented reality systems.

Inertial navigation is the task of estimating a body's trajectory using 

IMU sensor measurements. This task is inherently difficult, as small 

amounts of noise in these measurements accumulate over time to large 

errors in position estimates.

Several different methods have been developed to deal with this. Deep 

learning methods have been particularly effective and achieve state-of-

the-art results.

The goal of this work is to introduce transformer-based models that 

outperform the existing best models. We implement and evaluate 

transformer-based models that outperform the existing best methods.

RoNIN Model and Dataset

Transformers5 are a highly effective neural network architecture that 

achieve better performance than RNNs and CNNs on a variety of tasks, 

including machine translation, image classification, and object 

detection.

We first implement a model that uses a transformer encoder to use as a 

baseline, then introduce convolutions to improve baseline transformer.

Approach

The input consists of the past 200 frames of 6-dimensional IMU data, and the output is a 

2D vector representing the velocity at the current frame. Regressed velocities are 

summed to reconstruct relative positions.

Results
We implemented and evaluated two baseline models and three 

convolutional transformer models, as well as several variations for 

each model. The main convolutional transformer models are:

• CNN stacked with input: Conv layers are applied separately to the 

accelerometer and gyroscope data, and the output is used 

alongside the original input as an input to the transformer.

• CNN sequential to transformer: As previously described, this model 

applies a CNN to the input sequentially before the transformer.

• CNN parallel to transformer: Applies the same CNN, but in parallel 

to the transformer, then concatenates the results from the CNN and 

the transformer afterwards.

Evaluation is done using two metrics:

• Absolute Trajectory Error (ATE): the root mean squared error 

between the ground truth trajectory and the estimated trajectory

• Relative Trajectory Error (RTE): the average root mean squared 

error over fixed time intervals of 1 minute

Models are evaluated on the RoNIN testing set. Results for the main 

models are shown below.

Conclusions
Transformers work well with IMU data and perform better than 

previous approaches for the task of inertial navigation, including 

CNNs such as ResNet and RNNs such as LSTM.

Incorporating convolutions into transformers can further improve 

performance, although they can also possibly degrade performance.

Our findings present a new pathway of research into applications of 

transformers for inertial navigation.
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